Three-Stage Bidirectional Interaction Network for Efficient RGB-D Salient Object Detection

被引:5
|
作者
Wang, Yang [1 ]
Zhang, Yanqing [1 ]
机构
[1] South China Univ Technol, Guangzhou, Peoples R China
来源
关键词
MODEL;
D O I
10.1007/978-3-031-26348-4_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The addition of depth maps improves the performance of salient object detection (SOD). However, most existing RGB-D SOD methods are inefficient. We observe that existing models take into account the respective advantages of the two modalities but do not fully explore the roles of cross-modality features of various levels. To this end, we remodel the relationship between RGB features and depth features from a new perspective of the feature encoding stage and propose a three-stage bidirectional interaction network (TBINet). Specifically, to obtain robust feature representations, we propose three interaction strategies: bidirectional attention guidance (BAG), bidirectional feature supplement (BFS), and shared network, and use them for the three stages of feature encoder, respectively. In addition, we propose a cross-modality feature aggregation (CFA) module for feature aggregation and refinement. Our model is lightweight (3.7 M parameters) and fast (329 ms on CPU). Experiments on six benchmark datasets show that TBINet outperforms other SOTA methods. Our model achieves the best performance and efficiency trade-off.
引用
收藏
页码:215 / 233
页数:19
相关论文
共 50 条
  • [31] CDNet: Complementary Depth Network for RGB-D Salient Object Detection
    Jin, Wen-Da
    Xu, Jun
    Han, Qi
    Zhang, Yi
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3376 - 3390
  • [32] Context-aware network for RGB-D salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Miao, Jun
    Ye, Qixiang
    [J]. PATTERN RECOGNITION, 2021, 111
  • [33] Scale Adaptive Fusion Network for RGB-D Salient Object Detection
    Kong, Yuqiu
    Zheng, Yushuo
    Yao, Cuili
    Liu, Yang
    Wang, He
    [J]. COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 608 - 625
  • [34] Salient object detection for RGB-D images by generative adversarial network
    Liu, Zhengyi
    Tang, Jiting
    Xiang, Qian
    Zhao, Peng
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (35-36) : 25403 - 25425
  • [35] An adaptive guidance fusion network for RGB-D salient object detection
    Haodong Sun
    Yu Wang
    Xinpeng Ma
    [J]. Signal, Image and Video Processing, 2024, 18 : 1683 - 1693
  • [36] Salient object detection for RGB-D images by generative adversarial network
    Zhengyi Liu
    Jiting Tang
    Qian Xiang
    Peng Zhao
    [J]. Multimedia Tools and Applications, 2020, 79 : 25403 - 25425
  • [37] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Wang, Jian
    Chen, Shuhan
    Lv, Xiao
    Xu, Xiuqi
    Hu, Xuelong
    [J]. VISUAL COMPUTER, 2022, 38 (05): : 1803 - 1814
  • [38] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Jian Wang
    Shuhan Chen
    Xiao Lv
    Xiuqi Xu
    Xuelong Hu
    [J]. The Visual Computer, 2022, 38 : 1803 - 1814
  • [39] Three-Stream Attention-Aware Network for RGB-D Salient Object Detection
    Chen, Hao
    Li, Youfu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 2825 - 2835
  • [40] DVSOD: RGB-D Video Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Wang, Size
    Li, Wenbo
    Cheng, Li
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,