Guided residual network for RGB-D salient object detection with efficient depth feature learning

被引:8
|
作者
Wang, Jian [1 ]
Chen, Shuhan [1 ]
Lv, Xiao [2 ]
Xu, Xiuqi [1 ]
Hu, Xuelong [1 ]
机构
[1] Yangzhou Univ, Sch Informat Engn, Yangzhou, Jiangsu, Peoples R China
[2] Chongqing Special Equipment Inspect & Res Inst, Chongqing, Peoples R China
来源
VISUAL COMPUTER | 2022年 / 38卷 / 05期
关键词
RGB-D salient object detection; Guided residual network; Efficient depth feature learning; Adaptive depth weight;
D O I
10.1007/s00371-021-02106-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
RGB-D salient object detection aims at identifying the most attractive parts from a RGB image and its corresponding depth image, which has been widely applied in many computer vision tasks. However, there are still two challenges: (1) how to quickly and effectively integrate the cross-modal features from the RGB-D data; and (2) how to mitigate the negative impact from the low-quality depth map. The previous methods mostly employ a two-stream architecture which adopts two backbone network to process RGB-D data and ignore the quality of depth map. In this paper, we propose a guided residual network to address these two issues. On the one hand, we design a simpler and efficient depth branch only using one convolutional layer and three residual modules to extract depth features instead of employing a pre-trained backbone to handle the depth data, and fuse RGB features and depth features in a multi-scale manner for refinement with top-down guidance. On the other hand, we add adaptive weight to depth maps to control the fusion between them, which mitigates the negative influence of unreliable depth map. Experimental results compared with 13 state-of-the-art methods on 7 datasets demonstrate the validity of the proposed approach both quantitatively and qualitatively, especially in efficiency (102 FPS) and compactness (64.2 MB).
引用
收藏
页码:1803 / 1814
页数:12
相关论文
共 50 条
  • [1] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Jian Wang
    Shuhan Chen
    Xiao Lv
    Xiuqi Xu
    Xuelong Hu
    [J]. The Visual Computer, 2022, 38 : 1803 - 1814
  • [2] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    [J]. PATTERN RECOGNITION, 2024, 150
  • [3] A deep multimodal feature learning network for RGB-D salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Miao, Jun
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2021, 92
  • [4] Depth Quality-Inspired Feature Manipulation for Efficient RGB-D Salient Object Detection
    Zhang, Wenbo
    Ji, Ge-Peng
    Wang, Zhuo
    Fu, Keren
    Zhao, Qijun
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 731 - 740
  • [5] CDNet: Complementary Depth Network for RGB-D Salient Object Detection
    Jin, Wen-Da
    Xu, Jun
    Han, Qi
    Zhang, Yi
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3376 - 3390
  • [6] Feature Calibrating and Fusing Network for RGB-D Salient Object Detection
    Zhang, Qiang
    Qin, Qi
    Yang, Yang
    Jiao, Qiang
    Han, Jungong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1493 - 1507
  • [7] Depth cue enhancement and guidance network for RGB-D salient object detection
    Li, Xiang
    Zhang, Qing
    Yan, Weiqi
    Dai, Meng
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [8] Depth-aware lightweight network for RGB-D salient object detection
    Ling, Liuyi
    Wang, Yiwen
    Wang, Chengjun
    Xu, Shanyong
    Huang, Yourui
    [J]. IET IMAGE PROCESSING, 2023, 17 (08) : 2350 - 2361
  • [9] Discriminative feature fusion for RGB-D salient object detection
    Chen, Zeyu
    Zhu, Mingyu
    Chen, Shuhan
    Lu, Lu
    Tang, Haonan
    Hu, Xuelong
    Ji, Chunfan
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106
  • [10] DGFNet: Depth-Guided Cross-Modality Fusion Network for RGB-D Salient Object Detection
    Xiao, Fen
    Pu, Zhengdong
    Chen, Jiaqi
    Gao, Xieping
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2648 - 2658