Three-Stage Bidirectional Interaction Network for Efficient RGB-D Salient Object Detection

被引:5
|
作者
Wang, Yang [1 ]
Zhang, Yanqing [1 ]
机构
[1] South China Univ Technol, Guangzhou, Peoples R China
来源
关键词
MODEL;
D O I
10.1007/978-3-031-26348-4_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The addition of depth maps improves the performance of salient object detection (SOD). However, most existing RGB-D SOD methods are inefficient. We observe that existing models take into account the respective advantages of the two modalities but do not fully explore the roles of cross-modality features of various levels. To this end, we remodel the relationship between RGB features and depth features from a new perspective of the feature encoding stage and propose a three-stage bidirectional interaction network (TBINet). Specifically, to obtain robust feature representations, we propose three interaction strategies: bidirectional attention guidance (BAG), bidirectional feature supplement (BFS), and shared network, and use them for the three stages of feature encoder, respectively. In addition, we propose a cross-modality feature aggregation (CFA) module for feature aggregation and refinement. Our model is lightweight (3.7 M parameters) and fast (329 ms on CPU). Experiments on six benchmark datasets show that TBINet outperforms other SOTA methods. Our model achieves the best performance and efficiency trade-off.
引用
收藏
页码:215 / 233
页数:19
相关论文
共 50 条
  • [41] Advancing in RGB-D Salient Object Detection: A Survey
    Chen, Ai
    Li, Xin
    He, Tianxiang
    Zhou, Junlin
    Chen, Duanbing
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [42] CFIDNet: cascaded feature interaction decoder for RGB-D salient object detection
    Tianyou Chen
    Xiaoguang Hu
    Jin Xiao
    Guofeng Zhang
    Shaojie Wang
    [J]. Neural Computing and Applications, 2022, 34 : 7547 - 7563
  • [43] Adaptive Fusion for RGB-D Salient Object Detection
    Wang, Ningning
    Gong, Xiaojin
    [J]. IEEE ACCESS, 2019, 7 : 55277 - 55284
  • [44] CFIDNet: cascaded feature interaction decoder for RGB-D salient object detection
    Chen, Tianyou
    Hu, Xiaoguang
    Xiao, Jin
    Zhang, Guofeng
    Wang, Shaojie
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10): : 7547 - 7563
  • [45] Multi-scale Residual Interaction for RGB-D Salient Object Detection
    Hu, Mingjun
    Zhang, Xiaoqin
    Zhao, Li
    [J]. COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 575 - 590
  • [46] UMINet: a unified multi-modality interaction network for RGB-D and RGB-T salient object detection
    Lina Gao
    Ping Fu
    Mingzhu Xu
    Tiantian Wang
    Bing Liu
    [J]. The Visual Computer, 2024, 40 : 1565 - 1582
  • [47] UMINet: a unified multi-modality interaction network for RGB-D and RGB-T salient object detection
    Gao, Lina
    Fu, Ping
    Xu, Mingzhu
    Wang, Tiantian
    Liu, Bing
    [J]. VISUAL COMPUTER, 2024, 40 (03): : 1565 - 1582
  • [48] Perceptual localization and focus refinement network for RGB-D salient object detection
    Han, Jinyu
    Wang, Mengyin
    Wu, Weiyi
    Jia, Xu
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259
  • [49] AFLNet: Adversarial focal loss network for RGB-D salient object detection
    Zhao, Xiaoli
    Chen, Zheng
    Hwang, Jenq-Neng
    Shang, Xiwu
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 94
  • [50] SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object Detection
    Lee, Minhyeok
    Park, Chaewon
    Cho, Suhwan
    Lee, Sangyoun
    [J]. COMPUTER VISION, ECCV 2022, PT XXIX, 2022, 13689 : 630 - 647