AFLNet: Adversarial focal loss network for RGB-D salient object detection

被引:1
|
作者
Zhao, Xiaoli [1 ]
Chen, Zheng [1 ]
Hwang, Jenq-Neng [2 ]
Shang, Xiwu [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai 201620, Peoples R China
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
关键词
RGB-D saliency object detection; Class imbalance; Adversarial focal loss; Inception fusion model; FUSION;
D O I
10.1016/j.image.2021.116224
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Because salient objects usually have fewer data in a scene, the problem of class imbalance is often encountered in salient object detection (SOD). In order to address this issue and achieve the consistent salient objects, we propose an adversarial focal loss network with improving generative adversarial networks for RGB-D SOD (called AFLNet), in which color and depth branches constitute the generator to achieve the saliency map, and adversarial branch with high-order potentials, instead of pixel-wise loss function, refines the output of the generator to obtain contextual information of objects. We infer the adversarial focal loss function to solve the problem of foreground?background class imbalance. To sufficiently fuse the high-level features of color and depth cues, an inception model is adopted in deep layers. We conduct a large number of experiments using our proposed model and its variants, and compare them with state-of-the-art methods. Quantitative and qualitative experimental results exhibit that our proposed approach can improve the accuracy of salient object detection and achieve the consistent objects.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Salient object detection for RGB-D images by generative adversarial network
    Liu, Zhengyi
    Tang, Jiting
    Xiang, Qian
    Zhao, Peng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (35-36) : 25403 - 25425
  • [2] Salient object detection for RGB-D images by generative adversarial network
    Zhengyi Liu
    Jiting Tang
    Qian Xiang
    Peng Zhao
    Multimedia Tools and Applications, 2020, 79 : 25403 - 25425
  • [3] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [4] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [5] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE Transactions on Image Processing, 2021, 30 : 1949 - 1961
  • [6] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [7] Dynamic Selective Network for RGB-D Salient Object Detection
    Wen, Hongfa
    Yan, Chenggang
    Zhou, Xiaofei
    Cong, Runmin
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Bao, Yongjun
    Ding, Guiguang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9179 - 9192
  • [8] DYNAMIC SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION
    Zhou, Jinlin
    Luo, Zhiming
    Li, Shaozi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 776 - 780
  • [9] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559
  • [10] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    NEUROCOMPUTING, 2023, 522 : 152 - 164