Cross-Stage Multi-Scale Interaction Network for RGB-D Salient Object Detection

被引:8
|
作者
Yi, Kang [1 ]
Zhu, Jinchao [1 ,2 ]
Guo, Fu [3 ]
Xu, Jing [1 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300071, Peoples R China
[2] Tsinghua Univ, Dept Automat, BNRist, Beijing 100084, Peoples R China
[3] NYU, Tandon Sch Engn, New York, NY 11201 USA
基金
中国国家自然科学基金;
关键词
Convolution; Object detection; Feature extraction; Strips; Measurement; Kernel; Fuses; Salient object detection; RGB-D; adaptive fusion; cross-stage; multi-scale; FUSION;
D O I
10.1109/LSP.2022.3223599
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Salient object detection (SOD) aims to detect the most prominent objects and regions in the human vision. Since the RGB and depth modalities contain discrepant characteristics and convey the clues of different domains, how to explore the fusion of multi-modal information and the interaction of cross-stage features remain the key problems in RGB-D SOD. In this letter, we propose a cross-stage multi-scale interaction network (CMINet), consisting of a multi-scale spatial pooling (MSP) module and a cross-stage pyramid interaction (CPI) module to interweave the feature maps of different stages in a bottom-up and top-down way. In addition, we also design an adaptive weight fusion (AWF) module to weigh the importance of multimodality features and fuse them. Extensive experiments are conducted on 4 widely used datasets to validate the effectiveness of the proposed CMINet. The results demonstrate that our approach achieves state-of-the-art performance against other 11 methods under 4 evaluation metrics.
引用
收藏
页码:2402 / 2406
页数:5
相关论文
共 50 条
  • [1] Multi-scale Residual Interaction for RGB-D Salient Object Detection
    Hu, Mingjun
    Zhang, Xiaoqin
    Zhao, Li
    [J]. COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 575 - 590
  • [2] MMNet: Multi-Stage and Multi-Scale Fusion Network for RGB-D Salient Object Detection
    Liao, Guibiao
    Gao, Wei
    Jiang, Qiuping
    Wang, Ronggang
    Li, Ge
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2436 - 2444
  • [3] Progressive multi-scale fusion network for RGB-D salient object detection
    Ren, Guangyu
    Xie, Yanchun
    Dai, Tianhong
    Stathaki, Tania
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 223
  • [4] Multi-scale iterative refinement network for RGB-D salient object detection
    Liu, Ze-Yu
    Liu, Jian-Wei
    Zuo, Xin
    Hu, Ming-Fei
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 106
  • [5] Dual attention guided multi-scale fusion network for RGB-D salient object detection
    Gao, Huan
    Guo, Jichang
    Wang, Yudong
    Dong, Jianan
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 118
  • [6] MAGNet: Multi-scale Awareness and Global fusion Network for RGB-D salient object detection
    Zhong, Mingyu
    Sun, Jing
    Ren, Peng
    Wang, Fasheng
    Sun, Fuming
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [7] Encoder deep interleaved network with multi-scale aggregation for RGB-D salient object detection
    Feng, Guang
    Meng, Jinyu
    Zhang, Lihe
    Lu, Huchuan
    [J]. PATTERN RECOGNITION, 2022, 128
  • [8] Multi-scale Cross-Modal Transformer Network for RGB-D Object Detection
    Xiao, Zhibin
    Xie, Pengwei
    Wang, Guijin
    [J]. MULTIMEDIA MODELING (MMM 2022), PT I, 2022, 13141 : 352 - 363
  • [9] Feature Enhancement and Multi-scale Cross-Modal Attention for RGB-D Salient Object Detection
    Wan, Xin
    Yang, Gang
    Zhou, Boyi
    Liu, Chang
    Wang, Hangxu
    Wang, Yutao
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 409 - 420
  • [10] RGB-D Salient Object Detection via Feature Fusion and Multi-scale Enhancement
    Wu, Peiliang
    Duan, Liangliang
    Kong, Lingfu
    [J]. COMPUTER VISION, CCCV 2015, PT II, 2015, 547 : 359 - 368