Global numerical analysis of an improved IMEX numerical scheme for a reaction diffusion SIS model in advective environments

被引:3
|
作者
Liu, X. [1 ]
Yang, Z. W. [2 ]
Zeng, Y. M. [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
关键词
Numerical solutions; Globally numerical asymptotically stability; Reaction-diffusion SIS epidemic model; Advective environment; Long time behaviors; QUALITATIVE-ANALYSIS; STEADY-STATES; STABILITY;
D O I
10.1016/j.camwa.2023.06.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents globally numerical properties of a new numerical scheme for a reaction-diffusion advection susceptible-infected-susceptible (SIS) model. A new numerical treatment technique is introduced in spatial discretization of advection-diffusion equation, which enables the numerical solutions to preserve the stability and positivity with less stepsize restrictions. The convergence, biological significance and globally stability of numerical solutions is explored in the paper. A threshold value, named by numerical basic reproduction number and denoted by ������& UDelta;������ 0 , is introduced in the numerical stability analysis of the model. It is proved the numerical disease free equilibrium (DFE) is globally asymptotically stable if ������& UDelta;���0 ���<1and unstable if ������& UDelta;���0 ���>1. It is shown the numerical basic number ������& UDelta;������ 0 replicates the asymptotic behaviors of the basic reproduction number ������0 for the model. Some numerical experiments are given in the end to confirm the conclusions.
引用
收藏
页码:264 / 273
页数:10
相关论文
共 50 条