Global numerical analysis of an improved IMEX numerical scheme for a reaction diffusion SIS model in advective environments

被引:3
|
作者
Liu, X. [1 ]
Yang, Z. W. [2 ]
Zeng, Y. M. [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
关键词
Numerical solutions; Globally numerical asymptotically stability; Reaction-diffusion SIS epidemic model; Advective environment; Long time behaviors; QUALITATIVE-ANALYSIS; STEADY-STATES; STABILITY;
D O I
10.1016/j.camwa.2023.06.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents globally numerical properties of a new numerical scheme for a reaction-diffusion advection susceptible-infected-susceptible (SIS) model. A new numerical treatment technique is introduced in spatial discretization of advection-diffusion equation, which enables the numerical solutions to preserve the stability and positivity with less stepsize restrictions. The convergence, biological significance and globally stability of numerical solutions is explored in the paper. A threshold value, named by numerical basic reproduction number and denoted by ������& UDelta;������ 0 , is introduced in the numerical stability analysis of the model. It is proved the numerical disease free equilibrium (DFE) is globally asymptotically stable if ������& UDelta;���0 ���<1and unstable if ������& UDelta;���0 ���>1. It is shown the numerical basic number ������& UDelta;������ 0 replicates the asymptotic behaviors of the basic reproduction number ������0 for the model. Some numerical experiments are given in the end to confirm the conclusions.
引用
收藏
页码:264 / 273
页数:10
相关论文
共 50 条
  • [41] A high order numerical scheme for a nonlinear nonlocal reaction-diffusion model arising in population theory
    Venturino, Ezio
    Anita, Sebastian
    Mezzanotte, Domenico
    Occorsio, Donatella
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [42] Mathematical analysis and numerical investigation of advection-reaction-diffusion computer virus model
    Shahid, Naveed
    Rehman, Muhammad Aziz-ur
    Khalid, Asma
    Fatima, Umbreen
    Shaikh, Tahira Sumbal
    Ahmed, Nauman
    Alotaibi, Hammad
    Rafiq, Muhammad
    Khan, Ilyas
    Nisar, Kottakkaran Sooppy
    RESULTS IN PHYSICS, 2021, 26
  • [43] Stability analysis and numerical simulations of the infection spread of epidemics as a reaction-diffusion model
    Hariharan, S.
    Shangerganesh, L.
    Manimaran, J.
    Hendy, A. S.
    Zaky, Mahmoud A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 10068 - 10090
  • [44] Numerical analysis of a reaction-diffusion susceptible-infected-susceptible epidemic model
    Liu, X.
    Yang, Z. W.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [45] Numerical simulation and stability analysis of a novel reaction–diffusion COVID-19 model
    Nauman Ahmed
    Amr Elsonbaty
    Ali Raza
    Muhammad Rafiq
    Waleed Adel
    Nonlinear Dynamics, 2021, 106 : 1293 - 1310
  • [46] Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation
    Kabir, M. Humayun
    Gani, M. Osman
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [47] An explicit numerical scheme to efficiently simulate molecular diffusion in environments with dynamically changing barriers
    Kossow, Christina
    Rybacki, Stefan
    Millat, Thomas
    Rateitschak, Katja
    Jaster, Robert
    Uhrmacher, Adelinde M.
    Wolkenhauer, Olaf
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2015, 21 (06) : 535 - 559
  • [48] Numerical simulation and error analysis for a novel fractal-fractional reaction diffusion model with weighted reaction
    Zhang, Lihong
    Lu, Keke
    Ahmad, Bashir
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 230 : 227 - 240
  • [49] A robust numerical scheme for the simulation of nonlinear convection-diffusion-reaction equation
    Aswin, V. S.
    Awasthi, Ashish
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2019, 20 (05): : 347 - 357
  • [50] ANALYSIS ON A SPATIAL SIS EPIDEMIC MODEL WITH SATURATED INCIDENCE FUNCTION IN ADVECTIVE ENVIRONMENTS: I. CONSERVED TOTAL POPULATION
    Chen, Xiaodan
    Cui, Renhao
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (06) : 2522 - 2544