Numerical analysis of a reaction-diffusion susceptible-infected-susceptible epidemic model

被引:6
|
作者
Liu, X. [1 ]
Yang, Z. W. [2 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Shandong, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2022年 / 41卷 / 08期
关键词
Reaction-diffusion SIS model; Numerical solution; Convergence; Long-time behaviors; BASIC REPRODUCTION NUMBER; QUALITATIVE-ANALYSIS; ASYMPTOTIC PROFILES; STEADY-STATES; STABILITY; BEHAVIOR;
D O I
10.1007/s40314-022-02113-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the numerical properties of a reaction-diffusion susceptible-infected-susceptible epidemic model. Comparing with existing literature, our numerical scheme gains advantage in terms of preserving the biological meanings (such as positivity or invariance of total population) unconditionally. An implicit-explicit technique is implemented in the time integration, which ensures the numerical positivity without CFL conditions while reducing the computation complexity. The solvability, convergence in finite time and the long-time behaviors of numerical solutions are investigated. A threshold value R-0(Delta x) for the long-time dynamics of numerical solutions is proposed, which is named as a numerical basic reproduction number. It is proved that the numerical disease-free equilibrium is locally asymptotically stable if R-0(Delta x) < 1 and unstable if R-0(Delta x) > 1. It is presented that R-0(Delta x) shares the same monotonicity and limits as the basic reproduction number of the underlying model and converges to the exact one. Some numerical experiments are given in the end to confirm the conclusions and explore the stability of the endemic equilibrium.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model
    Deng, Keng
    Wu, Yixiang
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 929 - 946
  • [2] Numerical analysis of a reaction–diffusion susceptible–infected–susceptible epidemic model
    X. Liu
    Z. W. Yang
    [J]. Computational and Applied Mathematics, 2022, 41
  • [3] Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model (vol 146, pg 929, 2016)
    Deng, Keng
    Wu, Yixiang
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (02) : 718 - 720
  • [4] Thermostated Susceptible-Infected-Susceptible epidemic model
    Alrebdi, H. I.
    Steklain, Andre
    Amorim, Edgard P. M.
    Zotos, Euaggelos
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 441
  • [5] Epidemic extinction in a generalized susceptible-infected-susceptible model
    Chen, Hanshuang
    Huang, Feng
    Zhang, Haifeng
    Li, Guofeng
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [6] Numerical Analysis of the Susceptible Exposed Infected Quarantined and Vaccinated (SEIQV) Reaction-Diffusion Epidemic Model
    Ahmed, Nauman
    Fatima, Mehreen
    Baleanu, Dumitru
    Nisar, Kottakkaran Sooppy
    Khan, Ilyas
    Rafiq, Muhammad
    Rehman, Muhammad Aziz Ur
    Ahmad, Muhammad Ozair
    [J]. FRONTIERS IN PHYSICS, 2020, 7
  • [7] Epidemic extinction in a simplicial susceptible-infected-susceptible model
    Guo, Yingshan
    Shen, Chuansheng
    Chen, Hanshuang
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (01):
  • [8] Global stability analysis of a delayed susceptible-infected-susceptible epidemic model
    Paulhus, Calah
    Wang, Xiang-Sheng
    [J]. JOURNAL OF BIOLOGICAL DYNAMICS, 2015, 9 : 45 - 50
  • [9] Accelerating Information Diffusion in Social Networks Under the Susceptible-Infected-Susceptible Epidemic Model
    Kandhway, Kundan
    Kuri, Joy
    [J]. 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 1515 - 1519
  • [10] Epidemic thresholds of the susceptible-infected-susceptible model on networks: A comparison of numerical and theoretical results
    Ferreira, Silvio C.
    Castellano, Claudio
    Pastor-Satorras, Romualdo
    [J]. PHYSICAL REVIEW E, 2012, 86 (04)