Global numerical analysis of an improved IMEX numerical scheme for a reaction diffusion SIS model in advective environments

被引:3
|
作者
Liu, X. [1 ]
Yang, Z. W. [2 ]
Zeng, Y. M. [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
关键词
Numerical solutions; Globally numerical asymptotically stability; Reaction-diffusion SIS epidemic model; Advective environment; Long time behaviors; QUALITATIVE-ANALYSIS; STEADY-STATES; STABILITY;
D O I
10.1016/j.camwa.2023.06.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents globally numerical properties of a new numerical scheme for a reaction-diffusion advection susceptible-infected-susceptible (SIS) model. A new numerical treatment technique is introduced in spatial discretization of advection-diffusion equation, which enables the numerical solutions to preserve the stability and positivity with less stepsize restrictions. The convergence, biological significance and globally stability of numerical solutions is explored in the paper. A threshold value, named by numerical basic reproduction number and denoted by ������& UDelta;������ 0 , is introduced in the numerical stability analysis of the model. It is proved the numerical disease free equilibrium (DFE) is globally asymptotically stable if ������& UDelta;���0 ���<1and unstable if ������& UDelta;���0 ���>1. It is shown the numerical basic number ������& UDelta;������ 0 replicates the asymptotic behaviors of the basic reproduction number ������0 for the model. Some numerical experiments are given in the end to confirm the conclusions.
引用
收藏
页码:264 / 273
页数:10
相关论文
共 50 条
  • [31] ANALYSIS AND NUMERICAL SIMULATIONS OF A REACTION-DIFFUSION MODEL WITH FIXED ACTIVE BODIES
    Yang, Chang
    Tine, Leon Matar
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (04) : 1339 - 1360
  • [32] A Numerical Scheme For Semilinear Singularly Perturbed Reaction-Diffusion Problems
    Yamac, Kerem
    Erdogan, Fevzi
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (01) : 405 - 412
  • [33] A New Numerical Scheme for Singularly Perturbed Reaction-Diffusion Problems
    Temel, Zelal
    Cakir, Musa
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (02): : 792 - 805
  • [34] On the numerical and structural properties of a logarithmic scheme for diffusion-reaction equations
    Macias-Diaz, J. E.
    APPLIED NUMERICAL MATHEMATICS, 2019, 140 : 104 - 114
  • [35] Numerical modeling of biomass fast pyrolysis by using an improved comprehensive reaction scheme for energy analysis
    Thoharudin
    Hsiau, Shu-San
    Chen, Yi-Shun
    Yang, Shouyin
    RENEWABLE ENERGY, 2022, 181 : 355 - 364
  • [36] Analytical and numerical approaches to coexistence of strains in a two-strain SIS model with diffusion
    Tuncer, Necibe
    Martcheva, Maia
    JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 406 - 439
  • [37] NUMERICAL DIFFUSION IN MULTIDIMENSIONAL THERMAL-HYDRAULIC ANALYSIS .1. NUMERICAL DIFFUSION AND UPWIND DIFFERENCING SCHEME
    MAEKAWA, I
    JOURNAL OF THE ATOMIC ENERGY SOCIETY OF JAPAN, 1986, 28 (05): : 444 - 454
  • [38] An improved numerical scheme for the approximate solution of the Parabolic Wave model
    Cimorelli, Luigi
    Cozzolino, Luca
    Della Morte, Renata
    Pianese, Domenico
    JOURNAL OF HYDROINFORMATICS, 2013, 15 (03) : 913 - 925
  • [39] Numerical Solution of Reaction–Diffusion Equations with Convergence Analysis
    M. Heidari
    M. Ghovatmand
    M. H. Noori Skandari
    D. Baleanu
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 384 - 399
  • [40] Numerical analysis of a reaction-diffusion-convection system
    Alhumaizi, K
    Henda, R
    Soliman, M
    COMPUTERS & CHEMICAL ENGINEERING, 2003, 27 (04) : 579 - 594