Numerical morphological analysis of fungal growth based on reaction-diffusion model

被引:0
|
作者
IGSES, Kyushu Univ., Japan [1 ]
不详 [2 ]
机构
来源
J. Environ. Eng. | 2009年 / 637卷 / 339-346期
关键词
Building materials;
D O I
10.3130/aije.74.339
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Numerical Morphological Analysis of Fungal Growth based on a Reaction-Diffusion Model
    Ito, Kazuhide
    Mizuno, Yu
    BIOCONTROL SCIENCE, 2009, 14 (01) : 21 - 30
  • [2] Analysis and numerical simulation of a reaction-diffusion mathematical model of atherosclerosis
    Mukherjee, Debasmita
    Mukherjee, Avishek
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (03) : 3517 - 3526
  • [3] A NUMERICAL ANALYSIS OF A REACTION-DIFFUSION SYSTEM MODELING THE DYNAMICS OF GROWTH TUMORS
    Anaya, Veronica
    Bendahmane, Mostafa
    Sepulveda, Mauricio
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (05): : 731 - 756
  • [4] ANALYSIS AND NUMERICAL SIMULATIONS OF A REACTION-DIFFUSION MODEL WITH FIXED ACTIVE BODIES
    Yang, Chang
    Tine, Leon Matar
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (04) : 1339 - 1360
  • [5] A reaction-diffusion model for long bones growth
    Garzon-Alvarado, D. A.
    Garcia-Aznar, J. M.
    Doblare, M.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2009, 8 (05) : 381 - 395
  • [6] Reaction-diffusion model for the growth of avascular tumor
    Ferreira, SC
    Martins, ML
    Vilela, MJ
    PHYSICAL REVIEW E, 2002, 65 (02):
  • [7] Stability analysis and numerical simulations of the infection spread of epidemics as a reaction-diffusion model
    Hariharan, S.
    Shangerganesh, L.
    Manimaran, J.
    Hendy, A. S.
    Zaky, Mahmoud A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 10068 - 10090
  • [8] Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation
    Kabir, M. Humayun
    Gani, M. Osman
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [9] Numerical analysis of a reaction-diffusion susceptible-infected-susceptible epidemic model
    Liu, X.
    Yang, Z. W.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [10] Numerical approximation of oscillating Turing patterns in a reaction-diffusion model for electrochemical material growth
    Sgura, Ivonne
    Bozzini, Benedetto
    Lacitignola, Deborah
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 896 - 903