A NUMERICAL ANALYSIS OF A REACTION-DIFFUSION SYSTEM MODELING THE DYNAMICS OF GROWTH TUMORS

被引:7
|
作者
Anaya, Veronica [1 ]
Bendahmane, Mostafa [2 ]
Sepulveda, Mauricio [1 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, CI2MA, Concepcion, Chile
[2] Univ Picardie Jules Verne, LAMFA, Fac Math & Informat, Amiens, France
来源
关键词
Reaction-diffusion system; weak solution; existence; finite volume scheme; pattern formation; FINITE-VOLUME SCHEME; FREE-BOUNDARY PROBLEM; MATHEMATICAL-MODEL; TUBULAR STRUCTURES; BIDOMAIN MODEL; CARDIAC TISSUE; STEADY-STATE; CONVERGENCE; CELLS; PROGRESSION;
D O I
10.1142/S0218202510004428
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a reaction-diffusion system of 2 x 2 equations modeling the spread of early tumor cells. The existence of weak solutions is ensured by a classical argument of Faedo-Galerkin method. Then, we present a numerical scheme for this model based on a finite volume method. We establish the existence of discrete solutions to this scheme, and we show that it converges to a weak solution. Finally, some numerical simulations are reported with pattern formation examples.
引用
收藏
页码:731 / 756
页数:26
相关论文
共 50 条
  • [1] Modeling and Finite Difference Numerical Analysis of Reaction-Diffusion Dynamics in a Microreactor
    Plazl, Igor
    Lakner, Mitja
    ACTA CHIMICA SLOVENICA, 2010, 57 (01) : 100 - 109
  • [2] Numerical modeling of reaction-diffusion e-epidemic dynamics
    Yasin, Muhammad Waqas
    Ashfaq, Syed Muhammad Hamza
    Ahmed, Nauman
    Raza, Ali
    Rafiq, Muhammad
    Akguel, Ali
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (05):
  • [3] On the dynamics of a reaction-diffusion system
    Adomian, G
    APPLIED MATHEMATICS AND COMPUTATION, 1997, 81 (01) : 93 - 95
  • [4] On the dynamics of a reaction-diffusion system
    Appl Math Comput (New York), 1 (93):
  • [5] Complex dynamics of tumors:: modeling an emerging brain tumor system with coupled reaction-diffusion equations
    Habib, S
    Molina-París, C
    Deisboeck, TS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 327 (3-4) : 501 - 524
  • [6] Reliable numerical analysis for stochastic reaction-diffusion system
    Yasin, Muhammad W.
    Ahmed, Nauman
    Iqbal, Muhammad Sajid
    Rafiq, Muhammad
    Raza, Ali
    Akgul, Ali
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [7] STABILITY ANALYSIS OF A REACTION-DIFFUSION SYSTEM MODELING ATHEROGENESIS
    Ibragimov, Akif
    Ritter, Laura
    Walton, Jay R.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (07) : 2150 - 2185
  • [8] On the dynamics of a discrete reaction-diffusion system
    Azmy, Y.Y.
    Protopopescu, V.
    Numerical Methods for Partial Differential Equations, 1991, 7 (04) : 385 - 405
  • [9] DYNAMICS OF A COUPLED REACTION-DIFFUSION SYSTEM
    ETLICHER, B
    WILHELMSSON, H
    PHYSICA SCRIPTA, 1990, 42 (01): : 81 - 84
  • [10] Pulse dynamics in a reaction-diffusion system
    Ohta, T
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 151 (01) : 61 - 72