Qualitative analysis on a spatial SIS epidemic model with linear source in advective environments: I standard incidence

被引:0
|
作者
Xiaodan Chen
Renhao Cui
机构
[1] Harbin Normal University,Y.Y.Tseng Functional Analysis Research Center and School of Mathematical Sciences
关键词
SIS epidemic model; Standard incidence; Linear source; Advective environment; Asymptotic profile; 35K57; 35J57; 35B40; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a reaction–diffusion SIS epidemic model with standard incidence infection mechanism and linear source in advective heterogeneous environments. We have derived the threshold-type dynamics in terms of the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document}: the disease will be eliminated if R0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0\le 1$$\end{document} while it persists uniformly if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0>1$$\end{document}. The global asymptotic stability of the endemic equilibrium is discussed in a special case. We mainly investigate the effects of linear source, advection and diffusion on asymptotic profiles of the endemic equilibrium. It is shown that the linear source can enhance persistence of infectious disease, advection may induce the concentration phenomenon and small dispersal rate of infected individuals can eradicate the disease. These results may offer some implications on disease control and prediction.
引用
收藏
相关论文
共 50 条
  • [1] Qualitative analysis on a spatial SIS epidemic model with linear source in advective environments: I standard incidence
    Chen, Xiaodan
    Cui, Renhao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [2] ANALYSIS ON A SPATIAL SIS EPIDEMIC MODEL WITH SATURATED INCIDENCE FUNCTION IN ADVECTIVE ENVIRONMENTS: I. CONSERVED TOTAL POPULATION
    Chen, Xiaodan
    Cui, Renhao
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (06) : 2522 - 2544
  • [3] Analysis on a spatial SIS epidemic model with saturated incidence function in advective environments: II. Varying total population
    Chen, Xiaodan
    Cui, Renhao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 402 : 328 - 360
  • [4] A REACTION-DIFFUSION-ADVECTION SIS EPIDEMIC MODEL WITH LINEAR EXTERNAL SOURCE AND OPEN ADVECTIVE ENVIRONMENTS
    Rao, Xu
    Zhang, Guohong
    Wang, Xiaoli
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6655 - 6677
  • [5] A spatial SIS model in advective heterogeneous environments
    Cui, Renhao
    Lou, Yuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 3305 - 3343
  • [6] A spatial SIS model in heterogeneous environments with vary advective rate
    An, Xiaowei
    Song, Xianfa
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 5449 - 5477
  • [7] Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogeneous environment
    Sun, Xueying
    Cui, Renhao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
  • [8] Threshold Behavior in a Stochastic SIS Epidemic Model with Standard Incidence
    Lin, Yuguo
    Jiang, Daqing
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2014, 26 (04) : 1079 - 1094
  • [9] Threshold Behavior in a Stochastic SIS Epidemic Model with Standard Incidence
    Yuguo Lin
    Daqing Jiang
    Journal of Dynamics and Differential Equations, 2014, 26 : 1079 - 1094
  • [10] Solution and α-path of uncertain SIS epidemic model with standard incidence and demography
    Fang, Jun
    Li, Zhiming
    Yang, Fan
    Zhou, Mengyuan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (01) : 927 - 935