Qualitative analysis on a spatial SIS epidemic model with linear source in advective environments: I standard incidence

被引:0
|
作者
Xiaodan Chen
Renhao Cui
机构
[1] Harbin Normal University,Y.Y.Tseng Functional Analysis Research Center and School of Mathematical Sciences
关键词
SIS epidemic model; Standard incidence; Linear source; Advective environment; Asymptotic profile; 35K57; 35J57; 35B40; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a reaction–diffusion SIS epidemic model with standard incidence infection mechanism and linear source in advective heterogeneous environments. We have derived the threshold-type dynamics in terms of the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document}: the disease will be eliminated if R0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0\le 1$$\end{document} while it persists uniformly if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0>1$$\end{document}. The global asymptotic stability of the endemic equilibrium is discussed in a special case. We mainly investigate the effects of linear source, advection and diffusion on asymptotic profiles of the endemic equilibrium. It is shown that the linear source can enhance persistence of infectious disease, advection may induce the concentration phenomenon and small dispersal rate of infected individuals can eradicate the disease. These results may offer some implications on disease control and prediction.
引用
收藏
相关论文
共 50 条
  • [41] SATURATED INCIDENCE TENDS TO EASE DISEASE PERSISTENCE: ANALYSIS OF AN SIS EPIDEMIC PATCH MODEL
    Cui, Renhao
    Li, Huicong
    Wang, Zikun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025,
  • [42] Dynamic analysis of a SIS epidemic model with nonlinear incidence and ratio dependent pulse control
    Zhu, Mengxin
    Zhang, Tongqian
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (04) : 3509 - 3532
  • [43] Stability and Hopf Bifurcation Analysis of an SIS Epidemic Model with Latency and Nonlinear Incidence Rate
    Pasion, Anthony M.
    Collera, Juancho A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [44] QUALITATIVE ANALYSIS OF A DIFFUSIVE SEIR EPIDEMIC MODEL WITH LINEAR EXTERNAL SOURCE AND ASYMPTOMATIC INFECTION IN HETEROGENEOUS ENVIRONMENT
    Tian, Xuan
    Guo, Shangjiang
    Liu, Zhisu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (06): : 3053 - 3075
  • [45] Asymptotic profiles of a diffusive SIRS epidemic model with standard incidence mechanism and a logistic source
    Pan, Yifei
    Zhu, Siyao
    Wang, Jinliang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [46] Asymptotic profiles of a diffusive SIRS epidemic model with standard incidence mechanism and a logistic source
    Yifei Pan
    Siyao Zhu
    Jinliang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [47] Bifurcation analysis of a discrete SIRS epidemic model with standard incidence rate
    Hu, Zengyun
    Chang, Linlin
    Teng, Zhidong
    Chen, Xi
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [48] Qualitative Analysis of Delayed SIR Epidemic Model with a Saturated Incidence Rate
    Rihan, Fathalla A.
    Anwar, M. Naim
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012
  • [49] Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model
    Li, Huicong
    Peng, Rui
    Wang, Feng-Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (02) : 885 - 913
  • [50] Bifurcation analysis of an SIS epidemic model with saturated. incidence rate and saturated treatment function
    Zhou, Tingting
    Zhang, Weipeng
    Lu, Qiuying
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 288 - 305