Qualitative analysis on a spatial SIS epidemic model with linear source in advective environments: I standard incidence

被引:0
|
作者
Xiaodan Chen
Renhao Cui
机构
[1] Harbin Normal University,Y.Y.Tseng Functional Analysis Research Center and School of Mathematical Sciences
关键词
SIS epidemic model; Standard incidence; Linear source; Advective environment; Asymptotic profile; 35K57; 35J57; 35B40; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a reaction–diffusion SIS epidemic model with standard incidence infection mechanism and linear source in advective heterogeneous environments. We have derived the threshold-type dynamics in terms of the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document}: the disease will be eliminated if R0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0\le 1$$\end{document} while it persists uniformly if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0>1$$\end{document}. The global asymptotic stability of the endemic equilibrium is discussed in a special case. We mainly investigate the effects of linear source, advection and diffusion on asymptotic profiles of the endemic equilibrium. It is shown that the linear source can enhance persistence of infectious disease, advection may induce the concentration phenomenon and small dispersal rate of infected individuals can eradicate the disease. These results may offer some implications on disease control and prediction.
引用
收藏
相关论文
共 50 条
  • [31] A reaction-diffusion SIS epidemic model with saturated incidence rate and logistic source
    Huo, Xin
    Cui, Renhao
    APPLICABLE ANALYSIS, 2022, 101 (13) : 4492 - 4511
  • [32] Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis
    Miao, Anqi
    Wang, Xinyang
    Zhang, Tongqian
    Wang, Wei
    Pradeep, B. G. Sampath Aruna
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [33] Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis
    Anqi Miao
    Xinyang Wang
    Tongqian Zhang
    Wei Wang
    BG Sampath Aruna Pradeep
    Advances in Difference Equations, 2017
  • [34] Long-time numerical properties analysis of a diffusive SIS epidemic model under a linear external source
    Liu, X.
    Yang, Z. W.
    Zeng, Y. M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (08) : 1737 - 1756
  • [35] Global numerical analysis of an improved IMEX numerical scheme for a reaction diffusion SIS model in advective environments
    Liu, X.
    Yang, Z. W.
    Zeng, Y. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 264 - 273
  • [36] Analysis of a spatial epidemic model with saturated incidence rate
    Liu, Pan-Ping
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 426 - 432
  • [37] Qualitative analysis on a diffusive SIS epidemic system with logistic source and spontaneous infection in a heterogeneous environment
    Zhang, Jialiang
    Cui, Renhao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [38] Qualitative analysis of an SEIS epidemic model with nonlinear incidence rate
    Wang La-di
    Li Jian-quan
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (05) : 667 - 672
  • [39] QUALITATIVE ANALYSIS OF AN SEIS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE
    王拉娣
    李建全
    Applied Mathematics and Mechanics(English Edition), 2006, (05) : 667 - 672
  • [40] Qualitative analysis of an seis epidemic model with nonlinear incidence rate
    La-di Wang
    Jian-quan Li
    Applied Mathematics and Mechanics, 2006, 27 : 667 - 672