Global numerical analysis of an improved IMEX numerical scheme for a reaction diffusion SIS model in advective environments

被引:3
|
作者
Liu, X. [1 ]
Yang, Z. W. [2 ]
Zeng, Y. M. [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
关键词
Numerical solutions; Globally numerical asymptotically stability; Reaction-diffusion SIS epidemic model; Advective environment; Long time behaviors; QUALITATIVE-ANALYSIS; STEADY-STATES; STABILITY;
D O I
10.1016/j.camwa.2023.06.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents globally numerical properties of a new numerical scheme for a reaction-diffusion advection susceptible-infected-susceptible (SIS) model. A new numerical treatment technique is introduced in spatial discretization of advection-diffusion equation, which enables the numerical solutions to preserve the stability and positivity with less stepsize restrictions. The convergence, biological significance and globally stability of numerical solutions is explored in the paper. A threshold value, named by numerical basic reproduction number and denoted by ������& UDelta;������ 0 , is introduced in the numerical stability analysis of the model. It is proved the numerical disease free equilibrium (DFE) is globally asymptotically stable if ������& UDelta;���0 ���<1and unstable if ������& UDelta;���0 ���>1. It is shown the numerical basic number ������& UDelta;������ 0 replicates the asymptotic behaviors of the basic reproduction number ������0 for the model. Some numerical experiments are given in the end to confirm the conclusions.
引用
收藏
页码:264 / 273
页数:10
相关论文
共 50 条
  • [1] Refined numerical scheme for advective transport in diffusion simulation
    Komatsu, T
    Ohgushi, K
    Asai, K
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (01): : 41 - 50
  • [2] Analysis and Dynamically Consistent Numerical Schemes for the SIS Model and Related Reaction Diffusion Equation
    Lubuma, J. M-S
    Mureithi, E.
    Terefe, Y. A.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 3RD INTERNATIONAL CONFERENCE - AMITANS'11, 2011, 1404
  • [3] A REACTION-DIFFUSION-ADVECTION SIS EPIDEMIC MODEL WITH LINEAR EXTERNAL SOURCE AND OPEN ADVECTIVE ENVIRONMENTS
    Rao, Xu
    Zhang, Guohong
    Wang, Xiaoli
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6655 - 6677
  • [4] Adapted IMEX numerical methods for reaction-diffusion problems
    D’ambrosio, Raffaele
    Moccaldi, Martina
    Paternoster, Beatrice
    International Journal of Circuits, Systems and Signal Processing, 2019, 13 : 507 - 515
  • [5] Refined numerical scheme for advective transport in diffusion simulation - Discussion
    Zoppou, C
    Roberts, S
    JOURNAL OF HYDRAULIC ENGINEERING, 1998, 124 (07) : 765 - 767
  • [6] Refined numerical scheme for advective transport in diffusion simulation - Discussion
    Manson, JR
    Wallis, SG
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1998, 124 (07): : 765 - 765
  • [7] Refined numerical scheme for advective transport in diffusion simulation - Closure
    Komatsu, T
    Ohgushi, K
    Asai, K
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1998, 124 (07): : 767 - 769
  • [8] Numerical analysis of the global identifiability of reaction-diffusion systems
    Vikhansky, A.
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (10) : 1978 - 1982
  • [10] Stability of a Numerical Discretisation Scheme for the SIS Epidemic Model with a Delay
    Kunnawuttipreechachan, Ekkachai
    WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL III, 2010, : 1923 - 1930