Acid-stable manganese oxides for proton exchange membrane water electrolysis

被引:69
|
作者
Kong, Shuang [1 ]
Li, Ailong [1 ]
Long, Jun [2 ]
Adachi, Kiyohiro [3 ]
Hashizume, Daisuke [3 ]
Jiang, Qike [4 ]
Fushimi, Kazuna [1 ]
Ooka, Hideshi [1 ]
Xiao, Jianping [2 ]
Nakamura, Ryuhei [1 ,5 ]
机构
[1] RIKEN Ctr Sustainable Resource Sci CSRS, Biofunct Catalyst Res Team, Wako, Japan
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian, Peoples R China
[3] RIKEN Ctr Emergent Matter Sci CEMS, Mat Characterizat Support Team, Wako, Japan
[4] Westlake Univ, Instrumentat & Serv Ctr Phys Sci, Hangzhou, Peoples R China
[5] Tokyo Inst Technol, Earth Life Sci Inst ELSI, Tokyo, Japan
基金
中国国家自然科学基金;
关键词
OXYGEN EVOLUTION CATALYST; TOTAL-ENERGY CALCULATIONS; ELECTROCATALYST; GAMMA-MNO2;
D O I
10.1038/s41929-023-01091-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Earth-abundant, acid-stable catalysts for the oxygen evolution reaction are essential for terawatt-scale hydrogen production using proton exchange membrane (PEM) electrolysers. Here we report that optimizing the lattice oxygen structure of manganese oxide allows it to sustain the oxygen evolution reaction for over one month at 1,000 mA cm-2 in 1 M H2SO4. The lifetime enhancement was achieved by substituting pyramidal oxygen with planar oxygen, which has a stronger Mn-O bond and thus suppresses the dissolution of manganese ions. Calculations show that the lattice oxygen dissolution is the bottleneck of deactivation, and this process is less favourable by over 0.2 eV on planar oxygen compared with pyramidal oxygen. Our material shows excellent performance even in a PEM electrolyser, reaching 2,000 mA cm-2 at 2 V with durability exceeding 1,000 h at 200 mA cm-2. This study expands the potential of Earth-abundant catalysts for PEM electrolysis, which may mitigate the reliance on iridium. Precious-metal-free catalysts for water oxidation commonly suffer from low stability in acidic electrolytes. Now, by controlling the intergrowth of the gamma-MnO2 structure, it has been possible to achieve 2 A cm-2 at 2 V and a stability of over 1,000 hours at 200 mA cm-2 in a polymer electrolyte membrane electrolyser.
引用
收藏
页码:252 / 261
页数:10
相关论文
共 50 条
  • [31] Ordered Membrane Electrode Assembly with Drastically Enhanced Proton and Mass Transport for Proton Exchange Membrane Water Electrolysis
    Tian, Bin
    Li, Yali
    Liu, Yiyang
    Ning, Fandi
    Dan, Xiong
    Wen, Qinglin
    He, Lei
    He, Can
    Shen, Min
    Zhou, Xiaochun
    NANO LETTERS, 2023, 23 (14) : 6474 - 6481
  • [32] Analysis of Acid-Stable and Active Oxides for the Oxygen Evolution Reaction
    Gunasooriya, G. T. Kasun Kalhara
    Norskov, Jens K.
    ACS ENERGY LETTERS, 2020, 5 (12): : 3778 - 3787
  • [33] Research progress of high efficiency proton exchange membrane water electrolysis technology
    Wen C.
    Zhang B.
    Wang Y.
    Liu Q.
    Tu Z.
    Zhang Z.
    Qu M.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (01): : 111 - 122
  • [34] Physical Degradation of Anode Catalyst Layer in Proton Exchange Membrane Water Electrolysis
    Xu, Shuwen
    Liu, Han
    Zheng, Nanfeng
    Tao, Hua Bing
    ADVANCED MATERIALS INTERFACES, 2025, 12 (04):
  • [35] A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies
    Feng, Qi
    Yuan, Xia-Zi
    Liu, Gaoyang
    Wei, Bing
    Zhang, Zhen
    Li, Hui
    Wang, Haijiang
    JOURNAL OF POWER SOURCES, 2017, 366 : 33 - 55
  • [36] Evaluation of the Efficiency of an Elevated Temperature Proton Exchange Membrane Water Electrolysis System
    Bonanno, Marco
    Mueller, Karsten
    Bensmann, Boris
    Hanke-Rauschenbach, Richard
    Peach, Retha
    Thiele, Simon
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [37] Proton exchange membrane water electrolysis: Modeling for hydrogen flow rate control
    Zasadzinski, Michel (michel.zasadzinski@univ-lorraine.fr), 1600, Elsevier Ltd (46):
  • [38] A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis
    Sezer, Nurettin
    Bayhan, Sertac
    Fesli, Ugur
    Sanfilippo, Antonio
    Materials Science for Energy Technologies, 2025, 8 : 44 - 65
  • [39] Advances and status of anode catalysts for proton exchange membrane water electrolysis technology
    Wu, Qiannan
    Wang, Yuannan
    Zhang, Kexin
    Xie, Zhoubing
    Sun, Ke
    An, Wei
    Liang, Xiao
    Zou, Xiaoxin
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (06) : 1025 - 1045
  • [40] A Pt cathode with high mass activity for proton exchange membrane water electrolysis
    Choi, Kyung Ji
    Kim, Soo-Kil
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (03) : 849 - 863