Acid-stable manganese oxides for proton exchange membrane water electrolysis

被引:69
|
作者
Kong, Shuang [1 ]
Li, Ailong [1 ]
Long, Jun [2 ]
Adachi, Kiyohiro [3 ]
Hashizume, Daisuke [3 ]
Jiang, Qike [4 ]
Fushimi, Kazuna [1 ]
Ooka, Hideshi [1 ]
Xiao, Jianping [2 ]
Nakamura, Ryuhei [1 ,5 ]
机构
[1] RIKEN Ctr Sustainable Resource Sci CSRS, Biofunct Catalyst Res Team, Wako, Japan
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian, Peoples R China
[3] RIKEN Ctr Emergent Matter Sci CEMS, Mat Characterizat Support Team, Wako, Japan
[4] Westlake Univ, Instrumentat & Serv Ctr Phys Sci, Hangzhou, Peoples R China
[5] Tokyo Inst Technol, Earth Life Sci Inst ELSI, Tokyo, Japan
基金
中国国家自然科学基金;
关键词
OXYGEN EVOLUTION CATALYST; TOTAL-ENERGY CALCULATIONS; ELECTROCATALYST; GAMMA-MNO2;
D O I
10.1038/s41929-023-01091-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Earth-abundant, acid-stable catalysts for the oxygen evolution reaction are essential for terawatt-scale hydrogen production using proton exchange membrane (PEM) electrolysers. Here we report that optimizing the lattice oxygen structure of manganese oxide allows it to sustain the oxygen evolution reaction for over one month at 1,000 mA cm-2 in 1 M H2SO4. The lifetime enhancement was achieved by substituting pyramidal oxygen with planar oxygen, which has a stronger Mn-O bond and thus suppresses the dissolution of manganese ions. Calculations show that the lattice oxygen dissolution is the bottleneck of deactivation, and this process is less favourable by over 0.2 eV on planar oxygen compared with pyramidal oxygen. Our material shows excellent performance even in a PEM electrolyser, reaching 2,000 mA cm-2 at 2 V with durability exceeding 1,000 h at 200 mA cm-2. This study expands the potential of Earth-abundant catalysts for PEM electrolysis, which may mitigate the reliance on iridium. Precious-metal-free catalysts for water oxidation commonly suffer from low stability in acidic electrolytes. Now, by controlling the intergrowth of the gamma-MnO2 structure, it has been possible to achieve 2 A cm-2 at 2 V and a stability of over 1,000 hours at 200 mA cm-2 in a polymer electrolyte membrane electrolyser.
引用
收藏
页码:252 / 261
页数:10
相关论文
共 50 条
  • [11] Optimizing Ionomer Distribution in Anode Catalyst Layer for Stable Proton Exchange Membrane Water Electrolysis
    Liu, Han
    Wang, Xinhui
    Lao, Kejie
    Wen, Linrui
    Huang, Meiquan
    Liu, Jiawei
    Hu, Tian
    Hu, Bo
    Xie, Shunji
    Li, Shuirong
    Fang, Xiaoliang
    Zheng, Nanfeng
    Tao, Hua Bing
    ADVANCED MATERIALS, 2024, 36 (28)
  • [12] Design Strategies of Active and Stable Oxygen Evolution Catalysts for Proton Exchange Membrane Water Electrolysis
    Lee, Jegon
    Lim, June Sung
    Seo, Bora
    Joo, Sang Hoon
    ENERGY & FUELS, 2023, 37 (23) : 17736 - 17753
  • [13] Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers
    Su, Hui
    Yang, Chenyu
    Liu, Meihuan
    Zhang, Xu
    Zhou, Wanlin
    Zhang, Yuhao
    Zheng, Kun
    Lian, Shixun
    Liu, Qinghua
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [14] Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers
    Hui Su
    Chenyu Yang
    Meihuan Liu
    Xu Zhang
    Wanlin Zhou
    Yuhao Zhang
    Kun Zheng
    Shixun Lian
    Qinghua Liu
    Nature Communications, 15
  • [15] Safety analysis of proton exchange membrane water electrolysis system
    Liu, Yuanxing
    Amin, Md. Tanjin
    Khan, Faisal
    Pistikopoulos, Efstratios N.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [16] Lewis Acid-Mediated Interfacial Water Supply for Sustainable Proton Exchange Membrane Water Electrolysis
    Deng, Liming
    Chen, Hongjun
    Hung, Sung-Fu
    Zhang, Ying
    Yu, Hanzhi
    Chen, Han-Yi
    Li, Linlin
    Peng, Shengjie
    Journal of the American Chemical Society, 2024, 146 (51) : 35438 - 35448
  • [17] Development status and prospects of proton exchange membrane water electrolysis
    He Z.
    Shi C.
    Chen Z.
    Pan L.
    Huang Z.
    Zhang X.
    Zou J.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (09): : 4762 - 4773
  • [18] Progress on the anode catalysts for proton exchange membrane water electrolysis
    Zhang, Jiahao
    Yue, Qin
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (24): : 2889 - 2905
  • [19] Enhancing proton exchange membrane water electrolysis by building electron/proton pathways
    Zhu, Liyan
    Zhang, Hao
    Zhang, Aojie
    Tian, Tian
    Shen, Yuhan
    Wu, Mingjuan
    Li, Neng
    Tang, Haolin
    ADVANCED POWDER MATERIALS, 2024, 3 (04):
  • [20] An acid-stable hexaphosphate ester based metal-organic framework and its polymer composite as proton exchange membrane
    Cai, Kun
    Sun, Fuxing
    Liang, Xiaoqiang
    Liu, Cong
    Zhao, Nian
    Zou, Xiaoqin
    Zhu, Guangshan
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) : 12943 - 12950