Acid-stable manganese oxides for proton exchange membrane water electrolysis

被引:69
|
作者
Kong, Shuang [1 ]
Li, Ailong [1 ]
Long, Jun [2 ]
Adachi, Kiyohiro [3 ]
Hashizume, Daisuke [3 ]
Jiang, Qike [4 ]
Fushimi, Kazuna [1 ]
Ooka, Hideshi [1 ]
Xiao, Jianping [2 ]
Nakamura, Ryuhei [1 ,5 ]
机构
[1] RIKEN Ctr Sustainable Resource Sci CSRS, Biofunct Catalyst Res Team, Wako, Japan
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian, Peoples R China
[3] RIKEN Ctr Emergent Matter Sci CEMS, Mat Characterizat Support Team, Wako, Japan
[4] Westlake Univ, Instrumentat & Serv Ctr Phys Sci, Hangzhou, Peoples R China
[5] Tokyo Inst Technol, Earth Life Sci Inst ELSI, Tokyo, Japan
基金
中国国家自然科学基金;
关键词
OXYGEN EVOLUTION CATALYST; TOTAL-ENERGY CALCULATIONS; ELECTROCATALYST; GAMMA-MNO2;
D O I
10.1038/s41929-023-01091-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Earth-abundant, acid-stable catalysts for the oxygen evolution reaction are essential for terawatt-scale hydrogen production using proton exchange membrane (PEM) electrolysers. Here we report that optimizing the lattice oxygen structure of manganese oxide allows it to sustain the oxygen evolution reaction for over one month at 1,000 mA cm-2 in 1 M H2SO4. The lifetime enhancement was achieved by substituting pyramidal oxygen with planar oxygen, which has a stronger Mn-O bond and thus suppresses the dissolution of manganese ions. Calculations show that the lattice oxygen dissolution is the bottleneck of deactivation, and this process is less favourable by over 0.2 eV on planar oxygen compared with pyramidal oxygen. Our material shows excellent performance even in a PEM electrolyser, reaching 2,000 mA cm-2 at 2 V with durability exceeding 1,000 h at 200 mA cm-2. This study expands the potential of Earth-abundant catalysts for PEM electrolysis, which may mitigate the reliance on iridium. Precious-metal-free catalysts for water oxidation commonly suffer from low stability in acidic electrolytes. Now, by controlling the intergrowth of the gamma-MnO2 structure, it has been possible to achieve 2 A cm-2 at 2 V and a stability of over 1,000 hours at 200 mA cm-2 in a polymer electrolyte membrane electrolyser.
引用
收藏
页码:252 / 261
页数:10
相关论文
共 50 条
  • [21] Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis
    Holzapfel, Peter
    Buehler, Melanie
    Chuyen Van Pham
    Hegge, Friedemann
    Boehm, Thomas
    McLaughlin, David
    Breitwieser, Matthias
    Thiele, Simon
    ELECTROCHEMISTRY COMMUNICATIONS, 2020, 110
  • [22] Deuterium enrichment by proton exchange membrane water electrolysis with electrolyte circulation
    Sato, Ibuki
    Furusawa, Koichiro
    Ueda, Mikito
    Matsushima, Hisayoshi
    FUSION ENGINEERING AND DESIGN, 2024, 202
  • [23] Evaluating the performance of hybrid proton exchange membrane for PEM water electrolysis
    Abdel-Motagali, Ali
    Al Bacha, Serge
    Rouby, Waleed M. A. El
    Bigarre, Janick
    Millet, Pierre
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 87 - 102
  • [24] Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis
    Jeong, Jae-Hyeun
    Shin, Eun-Kyung
    Jeong, Jae-Jin
    Na, Il-Chai
    Chu, Cheun-Ho
    Park, Kwon-Pil
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2014, 52 (06): : 695 - 700
  • [25] Performance improvement induced by membrane treatment in proton exchange membrane water electrolysis cells
    Kang, Zhenye
    Wang, Min
    Yang, Yingjie
    Wang, Hao
    Liu, Yanrong
    Mo, Jingke
    Li, Jing
    Deng, Peilin
    Jia, Chunman
    Tian, Xinlong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 5807 - 5816
  • [26] Innovative Membrane Electrode Assembly (MEA) Fabrication for Proton Exchange Membrane Water Electrolysis
    Jung, Guo-Bin
    Chan, Shih-Hung
    Lai, Chun-Ju
    Yeh, Chia-Chen
    Yu, Jyun-Wei
    ENERGIES, 2019, 12 (21)
  • [27] Proton exchange membrane water electrolysis system-membrane electrode assembly with additive
    Yu, Jyun-Wei
    Jung, Guo-bin
    Su, Yi-Ju
    Yeh, Chia-Chen
    Kan, Min-Yu
    Lee, Che-Yu
    Lai, Chun-Ju
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (30) : 15721 - 15726
  • [28] Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling
    Hu, Kewei
    Fang, Jiakun
    Ai, Xiaomeng
    Huang, Danji
    Zhong, Zhiyao
    Yang, Xiaobo
    Wang, Lei
    APPLIED ENERGY, 2022, 312
  • [29] Water electrolysis with proton exchange membranes
    Kopitzke, RW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 6 - SOCED
  • [30] Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis
    Ram, Ranit
    Xia, Lu
    Benzidi, Hind
    Guha, Anku
    Golovanova, Viktoria
    Garzon Manjon, Alba
    Llorens Rauret, David
    Sanz Berman, Pol
    Dimitropoulos, Marinos
    Mundet, Bernat
    Pastor, Ernest
    Celorrio, Veronica
    Mesa, Camilo A.
    Das, Aparna M.
    Pinilla-Sanchez, Adrian
    Gimenez, Sixto
    Arbiol, Jordi
    Lopez, Nuria
    Garcia de Arquer, F. Pelayo
    SCIENCE, 2024, 384 (6702) : 1373 - 1380