Acid-stable manganese oxides for proton exchange membrane water electrolysis

被引:69
|
作者
Kong, Shuang [1 ]
Li, Ailong [1 ]
Long, Jun [2 ]
Adachi, Kiyohiro [3 ]
Hashizume, Daisuke [3 ]
Jiang, Qike [4 ]
Fushimi, Kazuna [1 ]
Ooka, Hideshi [1 ]
Xiao, Jianping [2 ]
Nakamura, Ryuhei [1 ,5 ]
机构
[1] RIKEN Ctr Sustainable Resource Sci CSRS, Biofunct Catalyst Res Team, Wako, Japan
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian, Peoples R China
[3] RIKEN Ctr Emergent Matter Sci CEMS, Mat Characterizat Support Team, Wako, Japan
[4] Westlake Univ, Instrumentat & Serv Ctr Phys Sci, Hangzhou, Peoples R China
[5] Tokyo Inst Technol, Earth Life Sci Inst ELSI, Tokyo, Japan
基金
中国国家自然科学基金;
关键词
OXYGEN EVOLUTION CATALYST; TOTAL-ENERGY CALCULATIONS; ELECTROCATALYST; GAMMA-MNO2;
D O I
10.1038/s41929-023-01091-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Earth-abundant, acid-stable catalysts for the oxygen evolution reaction are essential for terawatt-scale hydrogen production using proton exchange membrane (PEM) electrolysers. Here we report that optimizing the lattice oxygen structure of manganese oxide allows it to sustain the oxygen evolution reaction for over one month at 1,000 mA cm-2 in 1 M H2SO4. The lifetime enhancement was achieved by substituting pyramidal oxygen with planar oxygen, which has a stronger Mn-O bond and thus suppresses the dissolution of manganese ions. Calculations show that the lattice oxygen dissolution is the bottleneck of deactivation, and this process is less favourable by over 0.2 eV on planar oxygen compared with pyramidal oxygen. Our material shows excellent performance even in a PEM electrolyser, reaching 2,000 mA cm-2 at 2 V with durability exceeding 1,000 h at 200 mA cm-2. This study expands the potential of Earth-abundant catalysts for PEM electrolysis, which may mitigate the reliance on iridium. Precious-metal-free catalysts for water oxidation commonly suffer from low stability in acidic electrolytes. Now, by controlling the intergrowth of the gamma-MnO2 structure, it has been possible to achieve 2 A cm-2 at 2 V and a stability of over 1,000 hours at 200 mA cm-2 in a polymer electrolyte membrane electrolyser.
引用
收藏
页码:252 / 261
页数:10
相关论文
共 50 条
  • [41] Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
    WANG ZhiMing
    XU Chao
    WANG XueYe
    LIAO ZhiRong
    DU XiaoZe
    Science China(Technological Sciences), 2021, 64 (07) : 1555 - 1566
  • [42] Effects of the Dynamic Loading Frequency on Performance of the Proton Exchange Membrane Water Electrolysis
    Shi, Xiaoyun
    Qiu, Xutao
    Yuan, Zhuolin
    Zhang, Runcheng
    Zhao, Kun
    Tan, Aidong
    Xu, Guizhi
    Song, Jie
    Liu, Jianguo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (48) : 66089 - 66098
  • [43] Optimization of anode porous transport layer in proton exchange membrane water electrolysis
    Xu, Guizhi
    Du, Xiaoze
    Que, Liulin
    Zhang, Liang
    Li, Jun
    Ye, Dingding
    Song, Jie
    Gao, Jie
    APPLIED THERMAL ENGINEERING, 2025, 263
  • [44] Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures
    Linkous, CA
    Anderson, HR
    Kopitzke, RW
    Nelson, GL
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1998, 23 (07) : 525 - 529
  • [45] The Role of Water in Vapor-fed Proton-Exchange-Membrane Electrolysis
    Fornaciari, Julie C.
    Gerhardt, Michael R.
    Zhou, Jie
    Regmi, Yagya N.
    Danilovic, Nemanja
    Bell, Alexis T.
    Weber, Adam Z.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
  • [46] Effect of power quality on the design of proton exchange membrane water electrolysis systems
    Koponen, Joonas
    Ruuskanen, Vesa
    Hehemann, Michael
    Rauls, Edward
    Kosonen, Antti
    Ahola, Jero
    Stolten, Detlef
    APPLIED ENERGY, 2020, 279
  • [47] Proton Exchange Membrane Water Electrolysis Modeling for System Simulation and Degradation Analysis
    Goessling, Soenke
    Stypka, Sebastian
    Bahr, Matthias
    Oberschachtsiek, Bernd
    Heinzel, Angelika
    CHEMIE INGENIEUR TECHNIK, 2018, 90 (10) : 1437 - 1442
  • [48] Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
    Wang ZhiMing
    Xu Chao
    Wang XueYe
    Liao ZhiRong
    Du XiaoZe
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) : 1555 - 1566
  • [49] Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures
    Linkous, CA
    Anderson, HR
    Kopitzke, RW
    Nelson, GL
    HYDROGEN ENERGY PROGRESS XI, VOLS 1-3, 1996, : 559 - 567
  • [50] Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
    ZhiMing Wang
    Chao Xu
    XueYe Wang
    ZhiRong Liao
    XiaoZe Du
    Science China Technological Sciences, 2021, 64 : 1555 - 1566