Analysis of Acid-Stable and Active Oxides for the Oxygen Evolution Reaction

被引:126
|
作者
Gunasooriya, G. T. Kasun Kalhara [1 ]
Norskov, Jens K. [1 ]
机构
[1] Tech Univ Denmark, Catalysis Theory Ctr, Dept Phys, DK-2800 Lyngby, Denmark
来源
ACS ENERGY LETTERS | 2020年 / 5卷 / 12期
关键词
TOTAL-ENERGY CALCULATIONS; REDUCTION; ELECTROCHEMISTRY; ELECTROCATALYSTS; EFFICIENCY; CATALYSIS; SURFACES; INSIGHTS; DESIGN;
D O I
10.1021/acsenergylett.0c02030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The discovery of acid-stable, active, and affordable electrocatalysts for the oxygen evolution reaction (OER) is crucial for the advancement of energy conversion and storage technologies to achieve a sustainable energy future. To date, the best performing electrocatalysts for OER in acidic solutions, IrO2 and RuO2, are expensive and scarce. Herein, we develop a systematic theoretical framework to investigate the OER activity performance of diverse and complex acid-stable oxides. By determining the most stable oxide surfaces, accounting for realistic surface coverages under OER conditions, and using theoretical OER overpotential as an activity descriptor, we identified Co(SbO3)(2), CoSbO4, Ni(SbO3)(2), Fe(SbO3)(2), FeSbO4, FeAg(MoO4)(2), MoWO6, and Ti(WO4)(2) as promising materials, some of which have already been experimentally found to have good OER performance, and some are new for experimental validation, thus expanding the chemical space for efficient OER materials. On the basis of the activity analysis, we further discuss strategies to improve the OER catalytic activity and the remaining challenges.
引用
收藏
页码:3778 / 3787
页数:10
相关论文
共 50 条
  • [1] Acid-Stable Oxides for Oxygen Electrocatalysis
    Wang, Zhenbin
    Zheng, Ya-Rong
    Chorkendorff, Ib
    Norskov, Jens K.
    ACS ENERGY LETTERS, 2020, 5 (09) : 2905 - 2908
  • [2] Acid-stable antimonate based catalysts for the electrocatalytic oxygen evolution reaction
    Gao, Xiaoping
    Zhou, Huang
    Wang, Zhe
    Zhou, Gang
    Wang, Jin
    Wu, Yuen
    NANO RESEARCH, 2023, 16 (04) : 4691 - 4697
  • [3] Acid-stable antimonate based catalysts for the electrocatalytic oxygen evolution reaction
    Xiaoping Gao
    Huang Zhou
    Zhe Wang
    Gang Zhou
    Jin Wang
    Yuen Wu
    Nano Research, 2023, 16 : 4691 - 4697
  • [4] Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction
    Kibsgaard, Jakob
    Jaramillo, Thomas F.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (52) : 14433 - 14437
  • [5] Discovery of Acid-Stable Oxygen Evolution Catalysts: High-Throughput Computational Screening of Equimolar Bimetallic Oxides
    Back, Seoin
    Tran, Kevin
    Ulissi, Zachary W.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (34) : 38256 - 38265
  • [6] Electrolyte-Induced Restructuring of Acid-Stable Oxygen Evolution Catalysts
    Veroneau, Samuel S.
    Thorarinsdottir, Agnes E.
    Loh, Daniel M.
    Hartnett, Alaina C.
    Keane, Thomas P.
    Nocera, Daniel G.
    CHEMISTRY OF MATERIALS, 2023, 35 (08) : 3218 - 3225
  • [7] Acid-Stable and Active M-N-C Catalysts for the Oxygen Reduction Reaction: The Role of Local Structure
    Patniboon, Tipaporn
    Hansen, Heine Anton
    ACS CATALYSIS, 2021, 11 (21) : 13102 - 13118
  • [8] Designing active oxides for a durable oxygen evolution reaction
    Oener, Sebastian Z.
    Bergmann, Arno
    Cuenya, Beatriz Roldan
    NATURE SYNTHESIS, 2023, 2 (09): : 817 - 827
  • [9] Designing active oxides for a durable oxygen evolution reaction
    Sebastian Z. Oener
    Arno Bergmann
    Beatriz Roldan Cuenya
    Nature Synthesis, 2023, 2 : 817 - 827
  • [10] IrO2-ZnO Composite Nanorod Array as an Acid-Stable Electrocatalyst with Superior Activity for the Oxygen Evolution Reaction
    Jin, Dasol
    Yoo, Hyomin
    Lee, Youngmi
    Lee, Chongmok
    Kim, Myung Hwa
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) : 3810 - 3820