Sharp reversed Hardy-Littlewood-Sobolev inequality with extension kernel

被引:6
|
作者
Dai, Wei [1 ]
Hu, Yunyun [2 ]
Liu, Zhao [3 ]
机构
[1] Beihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R China
[2] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R China
[3] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Peoples R China
基金
中国博士后科学基金;
关键词
existence of extremal functions; Eule-Lagrange equations; Pohozaev identity; Hardy-Littlewood-Sobolev inequality; STEIN-WEISS INEQUALITIES; CAFFARELLI-KOHN-NIRENBERG; FRACTIONAL INTEGRALS; POSITIVE SOLUTIONS; CLASSIFICATION; EXISTENCE; CONSTANTS; EQUATIONS; SYMMETRY; THEOREMS;
D O I
10.4064/sm220323-26-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the following reversed Hardy-Littlewood-Sobolev inequality with extension kernel: [GRAPHICS] for any nonnegative functions f E Lp( partial differential Rn+) and g E Lq ' (Rn+), where n > 2, p, q ' E (0, 1), alpha > n, 0 < beta < alpha-n n-1 , p > alpha-1-(n-1)beta are such that n-1 n-1 p + 1 1 q ' - alpha+beta-1 n = 1. We prove n the existence of extremal functions for the above inequality. Moreover, in the conformal invariant case, we classify all the extremal functions and hence derive the best constant via the method of moving spheres. It is quite surprising that the extremal functions do not depend on beta. Finally, we derive the sufficient and necessary conditions for existence of positive solutions to the Euler-Lagrange equations by using Pohozaev identities.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 50 条