Sharp reversed Hardy-Littlewood-Sobolev inequality with extension kernel
被引:6
|
作者:
Dai, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R ChinaBeihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R China
Dai, Wei
[1
]
Hu, Yunyun
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R ChinaBeihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R China
Hu, Yunyun
[2
]
Liu, Zhao
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Peoples R ChinaBeihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R China
Liu, Zhao
[3
]
机构:
[1] Beihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R China
[2] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R China
[3] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Peoples R China
In this paper, we prove the following reversed Hardy-Littlewood-Sobolev inequality with extension kernel: [GRAPHICS] for any nonnegative functions f E Lp( partial differential Rn+) and g E Lq ' (Rn+), where n > 2, p, q ' E (0, 1), alpha > n, 0 < beta < alpha-n n-1 , p > alpha-1-(n-1)beta are such that n-1 n-1 p + 1 1 q ' - alpha+beta-1 n = 1. We prove n the existence of extremal functions for the above inequality. Moreover, in the conformal invariant case, we classify all the extremal functions and hence derive the best constant via the method of moving spheres. It is quite surprising that the extremal functions do not depend on beta. Finally, we derive the sufficient and necessary conditions for existence of positive solutions to the Euler-Lagrange equations by using Pohozaev identities.
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Shaanxi, Peoples R China
Dou, Jingbo
Li, Ye
论文数: 0引用数: 0
h-index: 0
机构:
Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USAShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Shaanxi, Peoples R China
机构:
Rutgers State Univ, Hill Ctr Math Sci, Dept Math, 110 Freylinghuysen Rd, Piscataway, NJ 08854 USARutgers State Univ, Hill Ctr Math Sci, Dept Math, 110 Freylinghuysen Rd, Piscataway, NJ 08854 USA
机构:
Beijing Inst Technol, Sch Math & Stat, Key Lab Algebra Lie Theory & Anal, Minist Educ, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Key Lab Algebra Lie Theory & Anal, Minist Educ, Beijing 100081, Peoples R China
Chen, Lu
Lu, Guozhen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Math, Storrs, CT 06269 USABeijing Inst Technol, Sch Math & Stat, Key Lab Algebra Lie Theory & Anal, Minist Educ, Beijing 100081, Peoples R China
Lu, Guozhen
Tang, Hanli
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Key Lab Algebra Lie Theory & Anal, Minist Educ, Beijing 100081, Peoples R China