Sharp reversed Hardy-Littlewood-Sobolev inequality with extension kernel

被引:6
|
作者
Dai, Wei [1 ]
Hu, Yunyun [2 ]
Liu, Zhao [3 ]
机构
[1] Beihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R China
[2] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R China
[3] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Peoples R China
基金
中国博士后科学基金;
关键词
existence of extremal functions; Eule-Lagrange equations; Pohozaev identity; Hardy-Littlewood-Sobolev inequality; STEIN-WEISS INEQUALITIES; CAFFARELLI-KOHN-NIRENBERG; FRACTIONAL INTEGRALS; POSITIVE SOLUTIONS; CLASSIFICATION; EXISTENCE; CONSTANTS; EQUATIONS; SYMMETRY; THEOREMS;
D O I
10.4064/sm220323-26-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the following reversed Hardy-Littlewood-Sobolev inequality with extension kernel: [GRAPHICS] for any nonnegative functions f E Lp( partial differential Rn+) and g E Lq ' (Rn+), where n > 2, p, q ' E (0, 1), alpha > n, 0 < beta < alpha-n n-1 , p > alpha-1-(n-1)beta are such that n-1 n-1 p + 1 1 q ' - alpha+beta-1 n = 1. We prove n the existence of extremal functions for the above inequality. Moreover, in the conformal invariant case, we classify all the extremal functions and hence derive the best constant via the method of moving spheres. It is quite surprising that the extremal functions do not depend on beta. Finally, we derive the sufficient and necessary conditions for existence of positive solutions to the Euler-Lagrange equations by using Pohozaev identities.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 50 条
  • [31] Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent
    An, Xiaoming
    Peng, Shuangjie
    Xie, Chaodong
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (12) : 2497 - 2504
  • [32] Improved Hardy-Littlewood-Sobolev Inequality on Sn under Constraints
    Hu, Yun Yun
    Dou, Jing Bo
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (11) : 2149 - 2163
  • [33] Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent
    Xiaoming An
    Shuangjie Peng
    Chaodong Xie
    ScienceChina(Mathematics), 2019, 62 (12) : 2497 - 2504
  • [34] Probabilistic Approach to Fractional Integrals and the Hardy-Littlewood-Sobolev Inequality
    Applebaum, David
    Banuelos, Rodrigo
    ANALYTIC METHODS IN INTERDISCIPLINARY APPLICATIONS, 2015, 116 : 17 - 40
  • [35] Extension of Hardy-Littlewood-Sobolev Inequalities for Riesz Potentials on Hypergroups
    Sihwaningrum, Idha
    Maryani, Sri
    Gunawan, Hendra
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (06)
  • [36] Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality
    Rupert L. Frank
    Elliott H. Lieb
    Calculus of Variations and Partial Differential Equations, 2010, 39 : 85 - 99
  • [37] ON THE HARDY-LITTLEWOOD-SOBOLEV TYPE SYSTEMS
    Cheng, Ze
    Huang, Genggeng
    Li, Congming
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (06) : 2059 - 2074
  • [38] Hardy-Littlewood-Sobolev Inequality on Mixed-Norm Lebesgue Spaces
    Chen, Ting
    Sun, Wenchang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [39] Reverse Hardy-Littlewood-Sobolev inequalities
    Carrillo, Jose A.
    Delgadino, Matias G.
    Dolbeault, Jean
    Frank, Rupert L.
    Hoffmann, Franca
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 133 - 165
  • [40] Necessary and Sufficient Conditions of Doubly Weighted Hardy-Littlewood-Sobolev Inequality
    Zuoshunhua Shi
    Wu Di
    Dunyan Yan
    Analysis in Theory and Applications, 2014, 30 (02) : 193 - 204