Sharp reversed Hardy-Littlewood-Sobolev inequality with extension kernel

被引:6
|
作者
Dai, Wei [1 ]
Hu, Yunyun [2 ]
Liu, Zhao [3 ]
机构
[1] Beihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R China
[2] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R China
[3] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Peoples R China
基金
中国博士后科学基金;
关键词
existence of extremal functions; Eule-Lagrange equations; Pohozaev identity; Hardy-Littlewood-Sobolev inequality; STEIN-WEISS INEQUALITIES; CAFFARELLI-KOHN-NIRENBERG; FRACTIONAL INTEGRALS; POSITIVE SOLUTIONS; CLASSIFICATION; EXISTENCE; CONSTANTS; EQUATIONS; SYMMETRY; THEOREMS;
D O I
10.4064/sm220323-26-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the following reversed Hardy-Littlewood-Sobolev inequality with extension kernel: [GRAPHICS] for any nonnegative functions f E Lp( partial differential Rn+) and g E Lq ' (Rn+), where n > 2, p, q ' E (0, 1), alpha > n, 0 < beta < alpha-n n-1 , p > alpha-1-(n-1)beta are such that n-1 n-1 p + 1 1 q ' - alpha+beta-1 n = 1. We prove n the existence of extremal functions for the above inequality. Moreover, in the conformal invariant case, we classify all the extremal functions and hence derive the best constant via the method of moving spheres. It is quite surprising that the extremal functions do not depend on beta. Finally, we derive the sufficient and necessary conditions for existence of positive solutions to the Euler-Lagrange equations by using Pohozaev identities.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 50 条
  • [21] The Hardy-Littlewood-Sobolev inequality for (β, γ)-distance Riesz potentials
    Çinar, I
    Duru, H
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (03) : 757 - 762
  • [22] Reversed Hardy-Littlewood-Sobolev Type Inequality on Rn-m x Rn
    Li, Xiang
    Yang, Minbo
    RESULTS IN MATHEMATICS, 2024, 79 (06)
  • [23] Spherical reflection positivity and the Hardy-Littlewood-Sobolev inequality
    Frank, Rupert L.
    Lieb, Elliott H.
    CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 : 89 - +
  • [24] THE REVERSED HARDY-LITTLEWOOD-SOBOLEV TYPE INTEGRAL SYSTEMS WITH WEIGHTS
    Liu, Xiaoqian
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (03): : 989 - 996
  • [25] Sharp Hardy-Littlewood-Sobolev inequalities on quaternionic Heisenberg groups
    Christ, Michael
    Liu, Heping
    Zhang, An
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 : 361 - 395
  • [26] Sharp Hardy-Littlewood-Sobolev inequalities on the octonionic Heisenberg group
    Christ, Michael
    Liu, Heping
    Zhang, An
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (01) : 1 - 18
  • [27] Sobolev and Hardy-Littlewood-Sobolev inequalities
    Dolbeault, Jean
    Jankowiak, Gaspard
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) : 1689 - 1720
  • [28] Reversed Hardy-Littlewood-Sobolev inequalities with weights on the Heisenberg group
    Hu, Yunyun
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [29] Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent
    Xiaoming An
    Shuangjie Peng
    Chaodong Xie
    Science China Mathematics, 2019, 62 : 2497 - 2504
  • [30] EXISTENCE OF THE MAXIMIZING PAIR FOR THE DISCRETE HARDY-LITTLEWOOD-SOBOLEV INEQUALITY
    Huang, Genggeng
    Li, Congming
    Yin, Ximing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 935 - 942