Parameter estimation strategies for separable grey system models with comparisons and applications

被引:7
|
作者
Wei, Baolei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Coll Econ & Management, Nanjing, Peoples R China
关键词
Grey system models; Two-step least squares; Nonlinear least squares; Separable nonlinear least squares; Traffic flow; LOTKA-VOLTERRA MODEL; UNIFIED FRAMEWORK;
D O I
10.1016/j.apm.2022.11.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parameter estimation is a vital part of grey system models for dynamical modelling and forecasting time series. In this work, we induce a separable grey system model which covers both linear and nonlinear grey system models with separable structural parameters and propose three least squares-based strategies to estimate structural parameters and initial condition, namely two-step least squares, nonlinear least squares and separable nonlinear least squares. By using matrix computation tricks, the relationship between two-step least squares and separable nonlinear least squares estimates are quantified. Furthermore, all three strategies are comprehensively compared in terms of basic ideas, optimality, and computational efficiency. The numerical results indicate that nonlinear least squares outperforms the other two strategies, especially in the settings with large time intervals and high noise levels. Finally, we present two real applications aimed at forecasting the failure times of products and traffic flows during a given period. The results show that in each individual application, all three strategies generate reasonable estimates and the corresponding separable grey system models outperform the competitive ones. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 50 条
  • [31] A new Approach for Parameter Estimation of Power System Equipment Models
    Sajjadi, Mahsa
    Seifi, Hossein
    34TH INTERNATIONAL POWER SYSTEM CONFERENCE (PSC2019), 2019, : 530 - 535
  • [32] Evolution strategies based particle filters for state and parameter estimation of nonlinear models
    Uosaki, K
    Kimura, Y
    Hatanaka, T
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 884 - 890
  • [33] ESTIMATION OF THE SYSTEM PARAMETER OF UNBALANCED MODELS WITH THE AID OF MOD FUNCTIONS
    KARAMEMMETOGLU, T
    LANDGRAF, C
    ZWANZIG, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (02): : 138 - 140
  • [34] Parameter estimation and accuracy matching strategies for 2-D reactor models
    Nowak, U
    Grah, A
    Schreier, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 183 (02) : 301 - 311
  • [35] Latent Parameter Estimation in Fusion Networks Using Separable Likelihoods
    Uney, Murat
    Mulgrew, Bernard
    Clark, Daniel E.
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2018, 4 (04): : 752 - 768
  • [36] Photovoltaic Parameter Estimation Using Grey Wolf Optimization
    Darmansyah
    Robandi, Imam
    2017 3RD INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2017, : 593 - 597
  • [37] Grey Wolf Optimizer for parameter estimation in surface waves
    Song, Xianhai
    Tang, Li
    Zhao, Sutao
    Zhang, Xueqiang
    Li, Lei
    Huang, Jianquan
    Cai, Wei
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2015, 75 : 147 - 157
  • [38] New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data
    Stoica, Petre
    Babu, Prabhu
    Li, Jian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (01) : 35 - 47
  • [39] On parameter estimation for neuron models
    Madden, JL
    Ben Miled, Z
    Chin, RCY
    Schild, J
    IEEE INTERNATIONAL SYMPOSIUM ON BIO-INFORMATICS AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2000, : 253 - 262
  • [40] Parameter estimation in dynamical models
    Evensen, G
    Dee, DP
    Schröter, J
    OCEAN MODELING AND PARAMETERIZATION, 1998, 516 : 373 - 398