Parameter estimation strategies for separable grey system models with comparisons and applications

被引:7
|
作者
Wei, Baolei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Coll Econ & Management, Nanjing, Peoples R China
关键词
Grey system models; Two-step least squares; Nonlinear least squares; Separable nonlinear least squares; Traffic flow; LOTKA-VOLTERRA MODEL; UNIFIED FRAMEWORK;
D O I
10.1016/j.apm.2022.11.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parameter estimation is a vital part of grey system models for dynamical modelling and forecasting time series. In this work, we induce a separable grey system model which covers both linear and nonlinear grey system models with separable structural parameters and propose three least squares-based strategies to estimate structural parameters and initial condition, namely two-step least squares, nonlinear least squares and separable nonlinear least squares. By using matrix computation tricks, the relationship between two-step least squares and separable nonlinear least squares estimates are quantified. Furthermore, all three strategies are comprehensively compared in terms of basic ideas, optimality, and computational efficiency. The numerical results indicate that nonlinear least squares outperforms the other two strategies, especially in the settings with large time intervals and high noise levels. Finally, we present two real applications aimed at forecasting the failure times of products and traffic flows during a given period. The results show that in each individual application, all three strategies generate reasonable estimates and the corresponding separable grey system models outperform the competitive ones. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 50 条
  • [21] Analysing uncertainty in parameter estimation and prediction for grey-box building thermal behaviour models
    Brastein, O. M.
    Ghaderi, A.
    Pfeiffer, C. F.
    Skeie, N-O
    ENERGY AND BUILDINGS, 2020, 224
  • [22] Parameter Estimation Strategies in Thermodynamics
    Hoeller, Johannes
    Bickert, Patricia
    Schwartz, Patrick
    von Kurnatowski, Martin
    Kerber, Joachim
    Kuenzle, Niklaus
    Lorenz, Hilke-Marie
    Asprion, Norbert
    Blagov, Sergej
    Bortz, Michael
    CHEMENGINEERING, 2019, 3 (02) : 1 - 23
  • [23] A Kalman particle filter for online parameter estimation with applications to affine models
    He, Jian
    Khedher, Asma
    Spreij, Peter
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (02) : 353 - 403
  • [24] Parameter estimation in compartmental models using the Laplace transform with applications to pharmacokinetics
    Contreras, M
    Lin, CM
    MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 617 - 617
  • [25] Parameter estimation for binomial AR(1) models with applications in finance and industry
    Christian H. Weiß
    Hee-Young Kim
    Statistical Papers, 2013, 54 : 563 - 590
  • [26] A Kalman particle filter for online parameter estimation with applications to affine models
    Jian He
    Asma Khedher
    Peter Spreij
    Statistical Inference for Stochastic Processes, 2021, 24 : 353 - 403
  • [27] Parameter estimation using partial information with applications to queueing and related models
    Basawa, I. V.
    Bhat, U. N.
    Zhou, J.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1375 - 1383
  • [28] Parameter estimation for binomial AR(1) models with applications in finance and industry
    Weiss, Christian H.
    Kim, Hee-Young
    STATISTICAL PAPERS, 2013, 54 (03) : 563 - 590
  • [29] An Inverse Problem Approach for Parameter Estimation of Cardiovascular System Models
    Yang, Xu
    Leandro, Jorge S.
    Cordeiro, Thiago D.
    Lima, Antonio M. N.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 5642 - 5645
  • [30] On the parameter estimation of linear models of aggregate power system loads
    Knyazkin, V
    Cañizares, C
    Söder, L
    2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 2392 - 2397