Parameter estimation strategies for separable grey system models with comparisons and applications

被引:7
|
作者
Wei, Baolei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Coll Econ & Management, Nanjing, Peoples R China
关键词
Grey system models; Two-step least squares; Nonlinear least squares; Separable nonlinear least squares; Traffic flow; LOTKA-VOLTERRA MODEL; UNIFIED FRAMEWORK;
D O I
10.1016/j.apm.2022.11.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parameter estimation is a vital part of grey system models for dynamical modelling and forecasting time series. In this work, we induce a separable grey system model which covers both linear and nonlinear grey system models with separable structural parameters and propose three least squares-based strategies to estimate structural parameters and initial condition, namely two-step least squares, nonlinear least squares and separable nonlinear least squares. By using matrix computation tricks, the relationship between two-step least squares and separable nonlinear least squares estimates are quantified. Furthermore, all three strategies are comprehensively compared in terms of basic ideas, optimality, and computational efficiency. The numerical results indicate that nonlinear least squares outperforms the other two strategies, especially in the settings with large time intervals and high noise levels. Finally, we present two real applications aimed at forecasting the failure times of products and traffic flows during a given period. The results show that in each individual application, all three strategies generate reasonable estimates and the corresponding separable grey system models outperform the competitive ones. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 50 条
  • [41] On parameter estimation in population models
    Ross, J. V.
    Taimre, T.
    Pollett, P. K.
    THEORETICAL POPULATION BIOLOGY, 2006, 70 (04) : 498 - 510
  • [42] Parameter estimation for Muskingum models
    Das, A
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2004, 130 (02) : 140 - 147
  • [43] Estimation in Discrete Parameter Models
    Choirat, Christine
    Seri, Raffaello
    STATISTICAL SCIENCE, 2012, 27 (02) : 278 - 293
  • [44] PARAMETER ESTIMATION IN MULTIRESPONSE MODELS
    HOSTEN, LH
    FROMENT, GF
    PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, 1975, 19 (1-2) : 123 - 136
  • [45] Parameter estimation for neuron models
    Tokuda, I
    Parlitz, U
    Illing, L
    Kennel, M
    Abarbanel, H
    EXPERIMENTAL CHAOS, 2003, 676 : 251 - 256
  • [46] On parameter estimation in deformable models
    Fisker, R
    Carstensen, JM
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 762 - 766
  • [47] ALGORITHMS AND APPLICATIONS OF NONLINEAR PARAMETER-ESTIMATION OF ORTHOGONAL REGRESSION-MODELS
    ELMOURSI, AKM
    GFRERER, H
    ADVANCES IN ENGINEERING SOFTWARE, 1994, 21 (02) : 75 - 85
  • [48] Performance Bounds for Parameter Estimation under Misspecified Models Fundamental findings and applications
    Fortunati, Stefano
    Gini, Fulvio
    Greco, Maria S.
    Richmond, Christ D.
    IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (06) : 142 - 157
  • [49] Nonlinear estimation strategies for parameter estimation in chemical reactors
    Farza, M
    Hammouri, H
    Jallut, C
    Chouri, V
    Lieto, J
    COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 : S687 - S690
  • [50] PARAMETER ESTIMATION FOR HVAC SYSTEM MODELS FROM STANDARD TEST DATA
    Luthman, Hannah
    Gardner, John F.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 6B, 2017,