New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data

被引:205
|
作者
Stoica, Petre [1 ]
Babu, Prabhu [1 ]
Li, Jian [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
瑞典研究理事会; 欧洲研究理事会; 美国国家科学基金会;
关键词
Irregular sampling; separable models; sparse parameter estimation; spectral analysis; NONLINEAR LEAST-SQUARES; MAXIMUM-LIKELIHOOD;
D O I
10.1109/TSP.2010.2086452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Separable models occur frequently in spectral analysis, array processing, radar imaging and astronomy applications. Statistical inference methods for these models can be categorized in three large classes: parametric, nonparametric (also called "dense") and semiparametric (also called "sparse"). We begin by discussing the advantages and disadvantages of each class. Then we go on to introduce a new semiparametric/sparse method called SPICE (a semiparametric/sparse iterative covariance-based estimation method). SPICE is computationally quite efficient, enjoys global convergence properties, can be readily used in the case of replicated measurements and, unlike most other sparse estimation methods, does not require any subtle choices of user parameters. We illustrate the statistical performance of SPICE by means of a line-spectrum estimation study for irregularly sampled data.
引用
收藏
页码:35 / 47
页数:13
相关论文
共 50 条