New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data

被引:205
|
作者
Stoica, Petre [1 ]
Babu, Prabhu [1 ]
Li, Jian [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
瑞典研究理事会; 欧洲研究理事会; 美国国家科学基金会;
关键词
Irregular sampling; separable models; sparse parameter estimation; spectral analysis; NONLINEAR LEAST-SQUARES; MAXIMUM-LIKELIHOOD;
D O I
10.1109/TSP.2010.2086452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Separable models occur frequently in spectral analysis, array processing, radar imaging and astronomy applications. Statistical inference methods for these models can be categorized in three large classes: parametric, nonparametric (also called "dense") and semiparametric (also called "sparse"). We begin by discussing the advantages and disadvantages of each class. Then we go on to introduce a new semiparametric/sparse method called SPICE (a semiparametric/sparse iterative covariance-based estimation method). SPICE is computationally quite efficient, enjoys global convergence properties, can be readily used in the case of replicated measurements and, unlike most other sparse estimation methods, does not require any subtle choices of user parameters. We illustrate the statistical performance of SPICE by means of a line-spectrum estimation study for irregularly sampled data.
引用
收藏
页码:35 / 47
页数:13
相关论文
共 50 条
  • [21] A NEW METHOD OF ANALYSIS OF SAMPLED-DATA SYSTEMS
    POPOULIS, A
    PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1959, 47 (03): : 463 - 463
  • [22] Spectral Analysis of Nonuniformly Sampled Data: A New Approach Versus the Periodogram
    Stoica, Petre
    Li, Han
    He, Hao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (03) : 843 - 858
  • [23] A new parameter estimation algorithm for non-uniformly multirate sampled-data systems
    Liu, Yanjun
    Ding, Feng
    Shi, Yang
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 84 - 89
  • [24] Sparse kernel spectral clustering models for large-scale data analysis
    Alzate, Carlos
    Suykens, Johan A. K.
    NEUROCOMPUTING, 2011, 74 (09) : 1382 - 1390
  • [25] A New Method for Parameter Estimation of Multicomponent LFM Signal based on Sparse Signal Representation
    Zhu, Sha
    Wang, Hongqiang
    Li, Xiang
    2008 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-4, 2008, : 15 - 19
  • [26] New Method for Parameter Estimation in Probabilistic Models: Minimum Probability Flow
    Sohl-Dickstein, Jascha
    Battaglino, Peter B.
    DeWeese, Michael R.
    PHYSICAL REVIEW LETTERS, 2011, 107 (22)
  • [27] Some Notes on the Use of the Windowed Fourier Transform for Spectral Analysis of Discretely Sampled Data
    Johnson, Robert W.
    AXIOMS, 2013, 2 (03): : 286 - 310
  • [28] SPECTRAL PARAMETER ANALYSIS (SPA) OF EEG - METHOD AND ITS CLINICAL APPLICATION
    WENNBERG, A
    ISAKSSON, A
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1975, 38 (02): : 210 - 210
  • [29] Latent class models for diary method data: Parameter estimation by local computations
    Rijmen, Frank
    Vansteelandt, Kristof
    De Boeck, Paul
    PSYCHOMETRIKA, 2008, 73 (02) : 167 - 182
  • [30] Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations
    Frank Rijmen
    Kristof Vansteelandt
    Paul De Boeck
    Psychometrika, 2008, 73 : 167 - 182