A New Method for Parameter Estimation of Multicomponent LFM Signal based on Sparse Signal Representation

被引:1
|
作者
Zhu, Sha [1 ]
Wang, Hongqiang [1 ]
Li, Xiang [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, Changsha, Hunan, Peoples R China
关键词
Multicomponent LFM signal; Single Degree of Freedom; Parameter Estimation; Sparse Signal Representation; Sparse Bayesian Learning;
D O I
10.1109/ICINFA.2008.4607960
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Signal parameter estimation is a crucial issue in SAR/ISAR imaging, especially for multicomponent Linear Frequency Modulated (LFM) signal with single degree of freedom. A new method of parameter estimation based on sparse signal representation is presented in this paper, which expands signal on a set of over-complete basis. The method is analyzed and validated for performance through simulation, with three commonly used signal sparse representation algorithms compared, including BP, FOCUSS and Sparse Bayesian Learning. The result shows that Sparse Bayesian Learning performs better in sparse components than the other two algorithms, which can estimate signal parameters more efficiently.
引用
收藏
页码:15 / 19
页数:5
相关论文
共 50 条
  • [1] Multicomponent LFM signal detection and parameter estimation method based on FRFT
    Song Y.
    Huang Y.
    Zhang H.
    Qin Z.
    Gao W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (06): : 1221 - 1228
  • [2] LFM Signal Detection and Estimation Based On Sparse Representation
    Joneidi, Mohsen
    Zaeemzadeh, Alireza
    Rezaeifar, Shideh
    Abavisani, Mahdi
    Rahnavard, Nazanin
    2015 49th Annual Conference on Information Sciences and Systems (CISS), 2015,
  • [3] Detection and parameter estimation of multicomponent LFM signal based on the fractional fourier transform
    Lin Qi
    Ran Tao
    Siyong Zhou
    Yue Wang
    Science in China Series F: Information Sciences, 2004, 47 : 184 - 198
  • [4] Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform
    QI Lin1
    2. School of Information Engineering
    Science China(Information Sciences), 2004, (02) : 184 - 198
  • [5] Detection and parameter estimation of multicomponent LFM signal based on the cubic phase function
    Wang, Yong
    Jiang, Yi-Cheng
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [6] Detection and Parameter Estimation of Multicomponent LFM Signal Based on the Cubic Phase Function
    Yong Wang
    Yi-Cheng Jiang
    EURASIP Journal on Advances in Signal Processing, 2008
  • [7] Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform
    Qi, L
    Tao, R
    Zhou, SY
    Wang, Y
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2004, 47 (02): : 184 - 198
  • [8] Parameter estimation algorithm for LFM signal based on new DFrFT
    Diao M.
    Zhu Y.
    Ning X.
    Wang Z.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2022, 54 (05): : 88 - 93
  • [9] A NEW ALGORITHM FOR PARAMETER ESTIMATION OF LFM SIGNAL
    Han Ning
    Shang Chao-xuan
    Wang Gang
    3RD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE (ITCS 2011), PROCEEDINGS, 2011, : 214 - 217
  • [10] Multicomponent LFM signal detection and parameter estimation based on Radon-Gabor transform
    Liu, Ai-Fang
    Zhu, Xiao-Hua
    Liu, Zhong
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2004, 26 (02): : 220 - 224