New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data

被引:205
|
作者
Stoica, Petre [1 ]
Babu, Prabhu [1 ]
Li, Jian [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
瑞典研究理事会; 欧洲研究理事会; 美国国家科学基金会;
关键词
Irregular sampling; separable models; sparse parameter estimation; spectral analysis; NONLINEAR LEAST-SQUARES; MAXIMUM-LIKELIHOOD;
D O I
10.1109/TSP.2010.2086452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Separable models occur frequently in spectral analysis, array processing, radar imaging and astronomy applications. Statistical inference methods for these models can be categorized in three large classes: parametric, nonparametric (also called "dense") and semiparametric (also called "sparse"). We begin by discussing the advantages and disadvantages of each class. Then we go on to introduce a new semiparametric/sparse method called SPICE (a semiparametric/sparse iterative covariance-based estimation method). SPICE is computationally quite efficient, enjoys global convergence properties, can be readily used in the case of replicated measurements and, unlike most other sparse estimation methods, does not require any subtle choices of user parameters. We illustrate the statistical performance of SPICE by means of a line-spectrum estimation study for irregularly sampled data.
引用
收藏
页码:35 / 47
页数:13
相关论文
共 50 条
  • [41] Robust Adaptive Lasso method for parameter's estimation and variable selection in high-dimensional sparse models
    Wahid, Abdul
    Khan, Dost Muhammad
    Hussain, Ijaz
    PLOS ONE, 2017, 12 (08):
  • [42] Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis
    Lu, Canyi
    Feng, Jiashi
    Lin, Zhouchen
    Yan, Shuicheng
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3714 - 3721
  • [43] Sparse grids: a new predictive modelling method for the analysis of geographic data
    Laffan, SW
    Nielsen, OM
    Silcock, H
    Hegland, M
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2005, 19 (03) : 267 - 292
  • [44] Time of Use Tariff parameter Estimation: A Data Analysis Approach on Multicore Systems
    Kalele, Amit
    Narkhede, Kiran
    Bakshi, Mayank
    ICPE'17: COMPANION OF THE 2017 ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING, 2017, : 113 - 118
  • [45] A New Method for Online Parameter Estimation of Hunt-Crossley Environment Dynamic Models
    Haddadi, Amir
    Hashtrudi-Zaad, Keyvan
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 981 - 986
  • [46] Spectral analysis of nonuniformly sampled data using a least square method for application in multiple PRI system
    Koh, J
    Sarkar, TK
    Wicks, MC
    2000 IEEE INTERNATIONAL CONFERENCE ON PHASED ARRAY SYSTEMS AND TECHNOLOGY, PROCEEDINGS, 2000, : 141 - 144
  • [47] Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method
    Leung, Denis H. Y.
    Wang, You-Gan
    Zhu, Min
    BIOSTATISTICS, 2009, 10 (03) : 436 - 445
  • [48] A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data
    Koh, T. S.
    Zhang, Jeff L.
    Ong, C. K.
    Shuter, B.
    PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (11): : 2857 - 2870
  • [49] A new local estimation method for single index models for longitudinal data
    Lin, Hongmei
    Zhang, Riquan
    Shi, Jianhong
    Liu, Jicai
    Liu, Yanghui
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (03) : 644 - 658
  • [50] METHODOLOGY OF EXTREME VALUES ANALYSIS AND ITS APPLICATION FOR PARAMETER ESTIMATION OF GENERALIZED LINEAR MODELS
    Trukhan, S.
    Bidyuk, P.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2016, (01) : 22 - 31