New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data

被引:205
|
作者
Stoica, Petre [1 ]
Babu, Prabhu [1 ]
Li, Jian [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
瑞典研究理事会; 欧洲研究理事会; 美国国家科学基金会;
关键词
Irregular sampling; separable models; sparse parameter estimation; spectral analysis; NONLINEAR LEAST-SQUARES; MAXIMUM-LIKELIHOOD;
D O I
10.1109/TSP.2010.2086452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Separable models occur frequently in spectral analysis, array processing, radar imaging and astronomy applications. Statistical inference methods for these models can be categorized in three large classes: parametric, nonparametric (also called "dense") and semiparametric (also called "sparse"). We begin by discussing the advantages and disadvantages of each class. Then we go on to introduce a new semiparametric/sparse method called SPICE (a semiparametric/sparse iterative covariance-based estimation method). SPICE is computationally quite efficient, enjoys global convergence properties, can be readily used in the case of replicated measurements and, unlike most other sparse estimation methods, does not require any subtle choices of user parameters. We illustrate the statistical performance of SPICE by means of a line-spectrum estimation study for irregularly sampled data.
引用
收藏
页码:35 / 47
页数:13
相关论文
共 50 条
  • [11] Spectral analysis of irregularly-sampled data: Paralleling the regularly-sampled data approaches
    Stoica, Petre
    Sandgren, Niclas
    DIGITAL SIGNAL PROCESSING, 2006, 16 (06) : 712 - 734
  • [12] The Removal of Spurious Spectral Peaks From Autoregressive Models for Irregularly Sampled Data
    Broersen, Piet M. T.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (01) : 205 - 214
  • [13] Spectral estimation from irregularly sampled data for frequencies far above the mean data rate
    Broersen, Piet M. T.
    2007 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2007, : 287 - +
  • [14] SparSpec:: a new method for fitting multiple sinusoids with irregularly sampled data
    Bourguignon, S.
    Carfantan, H.
    Bohm, T.
    ASTRONOMY & ASTROPHYSICS, 2007, 462 (01) : 379 - 387
  • [15] Refined instrumental variable parameter estimation of continuous-time Box-Jenkins models from irregularly sampled data
    Chen, Fengwei
    Garnier, Hugues
    Gilson, Marion
    Aguero, Juan C.
    Liu, Tao
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (02): : 291 - 300
  • [16] Generalised prediction error approach to spectral analysis and filtering of irregularly-sampled data
    Martin, RJ
    MATHEMATICS IN SIGNAL PROCESSING IV, 1998, 67 : 161 - 173
  • [17] Bias correction for direct spectral estimation from irregularly sampled data including sampling schemes with correlation
    Nils Damaschke
    Volker Kühn
    Holger Nobach
    EURASIP Journal on Advances in Signal Processing, 2021
  • [18] Bias correction for direct spectral estimation from irregularly sampled data including sampling schemes with correlation
    Damaschke, Nils
    Kuehn, Volker
    Nobach, Holger
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2021, 2021 (01)
  • [19] AN L0 NORM BASED METHOD FOR FREQUENCY ESTIMATION FROM IRREGULARLY SAMPLED DATA
    Hyder, Md Mashud
    Mahata, Kaushik
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4022 - 4025
  • [20] Spectral analysis of irregularly sampled data using a Bernoulli-Gaussian model with free frequencies
    Bourguignon, Sebastien
    Carfantan, Herve
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2967 - 2970