Refined instrumental variable parameter estimation of continuous-time Box-Jenkins models from irregularly sampled data

被引:7
|
作者
Chen, Fengwei [1 ,2 ,3 ]
Garnier, Hugues [2 ,3 ]
Gilson, Marion [2 ,3 ]
Aguero, Juan C. [4 ,5 ]
Liu, Tao [1 ]
机构
[1] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[2] Univ Lorraine, CRAN, UMR 7039, 2 Rue Jean Lamour, F-54519 Vandoeuvre Les Nancy, France
[3] CNRS, CRAN, UMR 7039, F-75700 Paris, France
[4] Univ Tecn Federico Santa Maria, Dept Elect, Ave Espana 1680, Valparaiso, Chile
[5] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
来源
IET CONTROL THEORY AND APPLICATIONS | 2017年 / 11卷 / 02期
关键词
sampled data systems; parameter estimation; continuous time systems; iterative methods; computational efficiency; noise model; prediction error method; plant model; instrumental variable method; two-step iterative procedure; plant-noise model decomposition; Box-Jenkins structure; irregularly sampled data; continuous-time Box-Jenkins model parameter estimation; CONVERGENCE ANALYSIS; IDENTIFICATION; ALGORITHMS;
D O I
10.1049/iet-cta.2016.0506
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the estimation of continuous-time Box-Jenkins model parameters from irregularly sampled data. The Box-Jenkins structure has been successful in describing systems subject to coloured noise, since it contains two sub-models that feature the characteristics of both plant and noise systems. Based on plant-noise model decomposition, a two-step iterative procedure is proposed to solve the estimation problem, which consists of an instrumental variable method for the plant model and a prediction error method for the noise model. The proposed method is of low complexity and shows good estimation robustness and accuracy. Implementation issues are discussed to improve the computational efficiency. Numerical examples are presented to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:291 / 300
页数:10
相关论文
共 50 条
  • [1] Refined Instrumental Variable Methods for Identification of Hammerstein Continuous-time Box Jenkins Models
    Laurain, V.
    Gilson, M.
    Garnier, H.
    Young, P. C.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1386 - 1391
  • [2] Refined instrumental variable methods for identification of LPV Box-Jenkins models
    Laurain, Vincent
    Gilson, Marion
    Toth, Roland
    Garnier, Hugues
    [J]. AUTOMATICA, 2010, 46 (06) : 959 - 967
  • [3] Box-Jenkins continuous-time modeling
    Pintelon, R
    Schoukens, J
    Rolain, Y
    [J]. AUTOMATICA, 2000, 36 (07) : 983 - 991
  • [4] Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model
    Young, Peter C.
    [J]. AUTOMATICA, 2015, 52 : 35 - 46
  • [5] Identification of continuous-time Box-Jenkins models with arbitrary time-delay
    Mahata, Kaushik
    Gamier, Hugues
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 6006 - +
  • [6] Identification of continuous-time ARX models from irregularly sampled data
    Larsson, Erik K.
    Mossberg, Magnus
    Soderstrom, Torsten
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (03) : 417 - 427
  • [7] INSTRUMENTAL VARIABLE METHOD FOR IDENTIFYING FRACTIONAL BOX-JENKINS MODELS
    Victor, Stephane
    Malti, Rachid
    Oustaloup, Alain
    [J]. PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1197 - 1204
  • [8] The CRB for parameter estimation in irregularly sampled continuous-time ARMA systems
    Larsson, EK
    Larsson, EG
    [J]. PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2003, : 110 - 113
  • [9] The CRB for parameter estimation in irregularly sampled continuous-time ARMA systems
    Larsson, EK
    Larsson, EG
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) : 197 - 200
  • [10] High-accuracy instrumental variable identification of continuous-time autoregressive processes from irregularly, sampled noisy data
    Mossberg, Magnus
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (08) : 4087 - 4091