Refined instrumental variable methods for identification of LPV Box-Jenkins models

被引:118
|
作者
Laurain, Vincent [1 ]
Gilson, Marion [1 ]
Toth, Roland [2 ]
Garnier, Hugues [1 ]
机构
[1] Nancy Univ, CRAN, CNRS, F-54506 Vandoeuvre Les Nancy, France
[2] Delft Univ Technol, DCSC, NL-2628 CD Delft, Netherlands
关键词
LPV models; System identification; Refined instrumental variable; Box-Jenkins models; Input/ouput; Transfer function;
D O I
10.1016/j.automatica.2010.02.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The identification of linear parameter-varying systems in an input-output setting is investigated, focusing on the case when the noise part of the data generating system is an additive colored noise. In the Box-Jenkins and output-error cases, it is shown that the currently available linear regression and instrumental variable methods from the literature are far from being optimal in terms of bias and variance of the estimates. To overcome the underlying problems, a refined instrumental variable method is introduced. The proposed approach is compared to the existing methods via a representative simulation example. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:959 / 967
页数:9
相关论文
共 50 条
  • [1] Identification of LPV Output-Error and Box-Jenkins Models via Optimal Refined Instrumental Variable Methods
    Laurain, V.
    Gilson, M.
    Toth, R.
    Garnier, H.
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 3865 - 3870
  • [2] Bayesian Identification of LPV Box-Jenkins Models
    Darwish, Mohamed
    Cox, Pepijn
    Pillonetto, Gianluigi
    Toth, Roland
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 66 - 71
  • [3] Refined Instrumental Variable Methods for Identification of Hammerstein Continuous-time Box Jenkins Models
    Laurain, V.
    Gilson, M.
    Garnier, H.
    Young, P. C.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1386 - 1391
  • [4] INSTRUMENTAL VARIABLE METHOD FOR IDENTIFYING FRACTIONAL BOX-JENKINS MODELS
    Victor, Stephane
    Malti, Rachid
    Oustaloup, Alain
    [J]. PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1197 - 1204
  • [5] Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model
    Young, Peter C.
    [J]. AUTOMATICA, 2015, 52 : 35 - 46
  • [6] Refined instrumental variable parameter estimation of continuous-time Box-Jenkins models from irregularly sampled data
    Chen, Fengwei
    Garnier, Hugues
    Gilson, Marion
    Aguero, Juan C.
    Liu, Tao
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (02): : 291 - 300
  • [7] BOX-JENKINS METHODS - ALTERNATIVE TO ECONOMETRIC MODELS
    NAYLOR, TH
    SEAKS, TG
    WICHERN, DW
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1972, 40 (02) : 123 - &
  • [8] Interactive Identification Method for Box-Jenkins Models
    Xie, Li
    Yang, Huizhong
    Ding, Feng
    [J]. LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT II, 2010, 98 : 163 - 169
  • [9] WATER-QUALITY MODELS USING BOX-JENKINS METHODS
    LITWIN, YJ
    JOERES, EF
    [J]. JOURNAL OF THE ENVIRONMENTAL ENGINEERING DIVISION-ASCE, 1975, 101 (03): : 449 - 451
  • [10] Box-Jenkins alike identification using nonparametric noise models
    Schoukens, J
    Pintelon, R
    Rolain, Y
    [J]. AUTOMATICA, 2004, 40 (12) : 2083 - 2089