Refined instrumental variable methods for identification of LPV Box-Jenkins models

被引:118
|
作者
Laurain, Vincent [1 ]
Gilson, Marion [1 ]
Toth, Roland [2 ]
Garnier, Hugues [1 ]
机构
[1] Nancy Univ, CRAN, CNRS, F-54506 Vandoeuvre Les Nancy, France
[2] Delft Univ Technol, DCSC, NL-2628 CD Delft, Netherlands
关键词
LPV models; System identification; Refined instrumental variable; Box-Jenkins models; Input/ouput; Transfer function;
D O I
10.1016/j.automatica.2010.02.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The identification of linear parameter-varying systems in an input-output setting is investigated, focusing on the case when the noise part of the data generating system is an additive colored noise. In the Box-Jenkins and output-error cases, it is shown that the currently available linear regression and instrumental variable methods from the literature are far from being optimal in terms of bias and variance of the estimates. To overcome the underlying problems, a refined instrumental variable method is introduced. The proposed approach is compared to the existing methods via a representative simulation example. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:959 / 967
页数:9
相关论文
共 50 条
  • [21] A NEURAL NETWORK APPROACH FOR THE IDENTIFICATION OF THE BOX-JENKINS MODEL
    JHEE, WC
    LEE, KC
    LEE, JK
    [J]. NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1992, 3 (03) : 323 - 339
  • [22] INTERPRETATION OF BOX-JENKINS TIME-SERIES MODELS
    ANDERSON, OD
    [J]. STATISTICIAN, 1977, 26 (02): : 127 - 145
  • [23] Forecasting Turkey balance of trade with Box-Jenkins models
    Dogan, Cem
    Ersel, Derya
    [J]. IKTISAT ISLETME VE FINANS, 2009, 24 (276): : 52 - 73
  • [24] Combination of Box-Jenkins and MLP/RNA Models for Forecasting
    Jacobs, W.
    Souza, A. M.
    Zanini, R. R.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (04) : 1870 - 1878
  • [25] Box-Jenkins identification revisited - Part II: Applications
    Pintelon, R
    Rolain, Y
    Schoukens, J
    [J]. AUTOMATICA, 2006, 42 (01) : 77 - 84
  • [26] Identification of continuous-time Box-Jenkins models with arbitrary time-delay
    Mahata, Kaushik
    Gamier, Hugues
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 6006 - +
  • [27] Forecasting Tuberculosis Incidence in Iran Using Box-Jenkins Models
    Moosazadeh, Mahmood
    Nasehi, Mahshid
    Bahrampour, Abbas
    Khanjani, Narges
    Sharafi, Saeed
    Ahmadi, Shanaz
    [J]. IRANIAN RED CRESCENT MEDICAL JOURNAL, 2014, 16 (05)
  • [28] Load forecasting by fuzzy neural network in Box-Jenkins models
    Tang, WK
    Wong, MH
    Wong, YK
    Chung, TS
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1738 - 1743
  • [29] A COMPARISON OF THE ACCURACY OF THE BOX-JENKINS METHOD WITH THAT OF AUTOMATED FORECASTING METHODS
    POULOS, L
    KVANLI, A
    PAVUR, R
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 1987, 3 (02) : 261 - 267
  • [30] Box-Jenkins identification revisited - Part III multivariable systems
    Pintelon, R.
    Schoukens, J.
    Guillaume, P.
    [J]. AUTOMATICA, 2007, 43 (05) : 868 - 875