Refined instrumental variable parameter estimation of continuous-time Box-Jenkins models from irregularly sampled data

被引:7
|
作者
Chen, Fengwei [1 ,2 ,3 ]
Garnier, Hugues [2 ,3 ]
Gilson, Marion [2 ,3 ]
Aguero, Juan C. [4 ,5 ]
Liu, Tao [1 ]
机构
[1] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[2] Univ Lorraine, CRAN, UMR 7039, 2 Rue Jean Lamour, F-54519 Vandoeuvre Les Nancy, France
[3] CNRS, CRAN, UMR 7039, F-75700 Paris, France
[4] Univ Tecn Federico Santa Maria, Dept Elect, Ave Espana 1680, Valparaiso, Chile
[5] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
来源
IET CONTROL THEORY AND APPLICATIONS | 2017年 / 11卷 / 02期
关键词
sampled data systems; parameter estimation; continuous time systems; iterative methods; computational efficiency; noise model; prediction error method; plant model; instrumental variable method; two-step iterative procedure; plant-noise model decomposition; Box-Jenkins structure; irregularly sampled data; continuous-time Box-Jenkins model parameter estimation; CONVERGENCE ANALYSIS; IDENTIFICATION; ALGORITHMS;
D O I
10.1049/iet-cta.2016.0506
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the estimation of continuous-time Box-Jenkins model parameters from irregularly sampled data. The Box-Jenkins structure has been successful in describing systems subject to coloured noise, since it contains two sub-models that feature the characteristics of both plant and noise systems. Based on plant-noise model decomposition, a two-step iterative procedure is proposed to solve the estimation problem, which consists of an instrumental variable method for the plant model and a prediction error method for the noise model. The proposed method is of low complexity and shows good estimation robustness and accuracy. Implementation issues are discussed to improve the computational efficiency. Numerical examples are presented to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:291 / 300
页数:10
相关论文
共 50 条
  • [21] Obtaining Multivariable Continuous-Time Models From Sampled Data
    Romano, Rodrigo A.
    Pait, Felipe
    dos Santos, P. Lopes
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 140 - 145
  • [22] On the Relation Between Discrete and Continuous-Time Refined Instrumental Variable Methods
    Gonzalez, Rodrigo A.
    Rojas, Cristian R.
    Pan, Siqi
    Welsh, James S.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2233 - 2238
  • [23] Parameter and Time-delay Identification of Continuous-time Models from Non-uniformly Sampled Data
    Chen, Fengwei
    Garnier, Hugues
    Gilson, Marion
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 1792 - 1797
  • [24] Estimation of continuous-time autoregressive model from finely sampled data
    Pham, DT
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (09) : 2576 - 2584
  • [25] Gradient-based iterative parameter estimation for Box-Jenkins systems with finite measurement data
    Wang, Dongqing
    Dai, Jiyang
    Ding, Feng
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 239 - 243
  • [26] Efficiency analysis of the Simplified Refined Instrumental Variable method for Continuous-time systems
    Pan, Siqi
    Welsh, James S.
    Gonzalez, Rodrigo A.
    Rojas, Cristian R.
    [J]. AUTOMATICA, 2020, 121
  • [27] Efficiency analysis of the Simplified Refined Instrumental Variable method for Continuous-time systems
    Pan, Siqi
    Welsh, James S.
    González, Rodrigo A.
    Rojas, Cristian R.
    [J]. Pan, Siqi (siqi.pan@uon.edu.au), 1600, Elsevier Ltd (121):
  • [28] Convergence analysis of refined instrumental variable method for continuous-time system identification
    Liu, X.
    Wang, J.
    Zheng, W. X.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (07): : 868 - 877
  • [29] Consistency analysis of the Simplified Refined Instrumental Variable method for Continuous-time systems
    Pan, Siqi
    Gonzalez, Rodrigo A.
    Welsh, James S.
    Rojas, Cristian R.
    [J]. AUTOMATICA, 2020, 113
  • [30] On the Unique Identification of Continuous-Time Autoregressive Models From Sampled Data
    Kirshner, Hagai
    Unser, Michael
    Ward, John Paul
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (06) : 1361 - 1376