On parameter estimation for neuron models

被引:2
|
作者
Madden, JL [1 ]
Ben Miled, Z [1 ]
Chin, RCY [1 ]
Schild, J [1 ]
机构
[1] Indiana Univ Purdue Univ, Purdue Sch Eng & Tech, ECE Dept, Indianapolis, IN 46202 USA
关键词
D O I
10.1109/BIBE.2000.889615
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Membrane bound ion channels give rise to many of the electrical signal characteristics exhibited by neurons, Ion channel models of neural function such as that proposed by Hodgkin-Huxley can be represented as a set of differential equations. Solving these differential equations for a given neuron involves finding optimal values for the parameters that define the Hodgkin-Huxley equations. Most often, these parameters are evaluated using an optimization algorithm that takes as input ion channel current data recorded from a neuron using the voltage clamp technique. Real-valued optimization algorithms often fail to find a global optimum for the parameters of the Hodgkin-Huxley differential equations. In this paper, we show that interval analysis based optimization algorithm, a branch and bound algorithm, provides an accurate solution for the Hodgkin-Huxley model.
引用
收藏
页码:253 / 262
页数:10
相关论文
共 50 条
  • [1] Parameter estimation for neuron models
    Tokuda, I
    Parlitz, U
    Illing, L
    Kennel, M
    Abarbanel, H
    [J]. EXPERIMENTAL CHAOS, 2003, 676 : 251 - 256
  • [2] Parameter estimation methods for single neuron models
    Tabak, J
    Murphey, CR
    Moore, LE
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2000, 9 (03) : 215 - 236
  • [3] Parameter Estimation Methods for Single Neuron Models
    Joël Tabak
    C. Richard Murphey
    L.E. Moore
    [J]. Journal of Computational Neuroscience, 2000, 9 : 215 - 236
  • [4] Parameter estimation of biological neuron models with bursting and spiking
    Fujikawa, Hiroyuki
    Mitsunaga, Kouichi
    Suemitsu, Haruo
    Matsuo, Takami
    [J]. 2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 2130 - +
  • [5] Optimal control methods for nonlinear parameter estimation in biophysical neuron models
    Kadakia, Nirag
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (09)
  • [6] Parameter Estimation of a Spiking Silicon Neuron
    Russell, Alexander
    Mazurek, Kevin
    Mihalas, Stefan
    Niebur, Ernst
    Etienne-Cummings, Ralph
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2012, 6 (02) : 133 - 141
  • [7] Parameter Estimation of Two Spiking Neuron Models With Meta-Heuristic Optimization Algorithms
    AbdelAty, Amr M.
    Fouda, Mohammed E.
    Eltawil, Ahmed
    [J]. FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [8] Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data
    Lynch, Eoin P.
    Houghton, Conor J.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2015, 9
  • [9] Parameter estimation in single-compartment neuron models using a synchronization-based method
    Haufler, D.
    Morin, F.
    Lacaille, J. C.
    Skinner, F. K.
    [J]. NEUROCOMPUTING, 2007, 70 (10-12) : 1605 - 1610
  • [10] Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment
    Brookings, Ted
    Goeritz, Marie L.
    Marder, Eve
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2014, 112 (09) : 2332 - 2348