Moire fringes in conductive atomic force microscopy

被引:3
|
作者
Richarz, L. [1 ]
He, J. [1 ]
Ludacka, U. [1 ]
Bourret, E. [2 ]
Yan, Z. [2 ,3 ]
van Helvoort, A. T. J. [4 ]
Meier, D. [1 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[4] NTNU Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
基金
欧洲研究理事会;
关键词
Compendex;
D O I
10.1063/5.0145173
中图分类号
O59 [应用物理学];
学科分类号
摘要
Moire physics plays an important role in characterization of functional materials and engineering of physical properties in general, ranging from strain-driven transport phenomena to superconductivity. Here, we report on the observation of moire fringes in conductive atomic force microscopy (cAFM) scans gained on the model ferroelectric Er(Mn,Ti)O-3. By performing a systematic study of the impact of key experimental parameters on the emergent moire fringes, such as scan angle and pixel density, we demonstrate that the observed fringes arise due to a superposition of the applied raster scanning and sample-intrinsic properties, classifying the measured modulation in conductance as a scanning moire effect. Our findings are important for the investigation of local transport phenomena in moire engineered materials by cAFM, providing a general guideline for distinguishing extrinsic from intrinsic moire effects. Furthermore, the experiments provide a possible pathway for enhancing the sensitivity, pushing the resolution limit of local transport measurements by probing conductance variations at the spatial resolution limit via more long-ranged moire patterns.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Iron related precipitates in multicrystalline silicon by conductive atomic force microscopy
    Vecchi, Pierpaolo
    Armaroli, Giovanni
    Sabatino, Marisa Di
    Cavalcoli, Daniela
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 129
  • [42] Solid Platinum Nanoprobes for Highly Reliable Conductive Atomic Force Microscopy
    Weber, Jonas
    Yuan, Yue
    Kuehnel, Fabian
    Metzke, Christoph
    Schaetz, Josef
    Frammelsberger, Werner
    Benstetter, Guenther
    Lanza, Mario
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (17) : 21602 - 21608
  • [43] Conductive Atomic Force Microscopy of Semiconducting Transition Metal Dichalcogenides and Heterostructures
    Giannazzo, Filippo
    Schiliro, Emanuela
    Greco, Giuseppe
    Roccaforte, Fabrizio
    NANOMATERIALS, 2020, 10 (04)
  • [44] Characterization method of polycrystalline materials using conductive atomic force microscopy
    Ding Xi-Dong
    Fu Gang
    Xiong Xiao-Min
    Zhang Jin-Xiu
    CHINESE PHYSICS LETTERS, 2008, 25 (10) : 3597 - 3600
  • [45] Conductive atomic force microscopy data from substantia nigra tissue
    Rourk, Christopher J.
    DATA IN BRIEF, 2019, 27
  • [46] Conductive atomic force microscopy application on leaky contact analysis and characterization
    Chuang, JH
    Lee, JC
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2004, 4 (01) : 50 - 53
  • [47] Conductive-tip atomic force microscopy of CdSe colloidal nanodots
    Tanaka, I
    Kawasaki, E
    Ohtsuki, O
    Uno, K
    Hara, M
    Asami, H
    Kamiya, I
    SURFACE SCIENCE, 2003, 532 : 801 - 805
  • [48] Electrical conductivity measurement of λ DNA molecules by conductive atomic force microscopy
    Wang, Ying
    Xie, Ying
    Gao, Mingyan
    Zhang, Wenxiao
    Liu, Lanjiao
    Qu, Yingmin
    Wang, Jiajia
    Hu, Cuihua
    Song, Zhengxun
    Wang, Zuobin
    NANOTECHNOLOGY, 2022, 33 (05)
  • [49] Atomic force microscopy studies of conductive nanostructures in solid polymer electrolytes
    Hiesgen, Renate
    Helmly, Stefan
    Morawietz, Tobias
    Yuan, Xiao-Zi
    Wang, Haijiang
    Friedrich, K. Andreas
    ELECTROCHIMICA ACTA, 2013, 110 : 292 - 305
  • [50] Conductive-probe atomic force microscopy characterization of silicon nanowire
    José Alvarez
    Irène Ngo
    Marie-Estelle Gueunier-Farret
    Jean-Paul Kleider
    Linwei Yu
    Pere Rocai Cabarrocas
    Simon Perraud
    Emmanuelle Rouvière
    Caroline Celle
    Céline Mouchet
    Jean-Pierre Simonato
    Nanoscale Research Letters, 6