Moire fringes in conductive atomic force microscopy

被引:3
|
作者
Richarz, L. [1 ]
He, J. [1 ]
Ludacka, U. [1 ]
Bourret, E. [2 ]
Yan, Z. [2 ,3 ]
van Helvoort, A. T. J. [4 ]
Meier, D. [1 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[4] NTNU Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
基金
欧洲研究理事会;
关键词
Compendex;
D O I
10.1063/5.0145173
中图分类号
O59 [应用物理学];
学科分类号
摘要
Moire physics plays an important role in characterization of functional materials and engineering of physical properties in general, ranging from strain-driven transport phenomena to superconductivity. Here, we report on the observation of moire fringes in conductive atomic force microscopy (cAFM) scans gained on the model ferroelectric Er(Mn,Ti)O-3. By performing a systematic study of the impact of key experimental parameters on the emergent moire fringes, such as scan angle and pixel density, we demonstrate that the observed fringes arise due to a superposition of the applied raster scanning and sample-intrinsic properties, classifying the measured modulation in conductance as a scanning moire effect. Our findings are important for the investigation of local transport phenomena in moire engineered materials by cAFM, providing a general guideline for distinguishing extrinsic from intrinsic moire effects. Furthermore, the experiments provide a possible pathway for enhancing the sensitivity, pushing the resolution limit of local transport measurements by probing conductance variations at the spatial resolution limit via more long-ranged moire patterns.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Electrical properties of ZnO nanorods studied by conductive atomic force microscopy
    Beinik, I.
    Kratzer, M.
    Wachauer, A.
    Wang, L.
    Lechner, R. T.
    Teichert, C.
    Motz, C.
    Anwand, W.
    Brauer, G.
    Chen, X. Y.
    Hsu, X. Y.
    Djurisic, A. B.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (05)
  • [32] Direct investigation of current transport in cells by conductive atomic force microscopy
    Zhao, W.
    Cheong, L. -Z.
    Xu, S.
    Cui, W.
    Song, S.
    Rourk, C. J.
    Shen, C.
    JOURNAL OF MICROSCOPY, 2020, 277 (01) : 49 - 57
  • [33] Atomic Force Microscopy Studies of Conductive Nanostructures in Solid Polymer Electrolytes
    Hiesgen, Renate
    Morawietz, Tobias
    Helmly, Stefan
    Galm, Ines
    Friedrich, K. Andreas
    POLYMER ELECTROLYTE FUEL CELLS 13 (PEFC 13), 2013, 58 (01): : 595 - 605
  • [34] Imaging and nanoprobing of graphene layers for interconnects by conductive atomic force microscopy
    Zhang, Li
    Katagiri, Masayuki
    Ishikura, Taishi
    Wada, Makoto
    Miyazaki, Hisao
    Nishide, Daisuke
    Matsumoto, Takashi
    Sakuma, Naoshi
    Kajita, Akihiro
    Sakai, Tadashi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (05)
  • [35] Study of leakage defects on GaN films by conductive atomic force microscopy
    Moore, J. C.
    Ortiz, J. E.
    Xie, J.
    Morkoc, H.
    Baski, A. A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2007, 61 : 90 - 94
  • [36] Insights into dynamic sliding contacts from conductive atomic force microscopy
    Chan, Nicholas
    Vazirisereshk, Mohammad R.
    Martini, Ashlie
    Egberts, Philip
    NANOSCALE ADVANCES, 2020, 2 (09): : 4117 - 4124
  • [37] DNA at conductive interfaces: What can atomic force microscopy offer?
    Muzyka, Kateryna
    Rico, Felix
    Xu, Guobao
    Casuso, Ignacio
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 938
  • [38] Conductive-probe atomic force microscopy characterization of silicon nanowire
    Alvarez, Jose
    Ngo, Irene
    Gueunier-Farret, Marie-Estelle
    Kleider, Jean-Paul
    Yu, Linwei
    Cabarrocas, Pere Rocai
    Perraud, Simon
    Rouviere, Emmanuelle
    Celle, Caroline
    Mouchet, Celine
    Simonato, Jean-Pierre
    NANOSCALE RESEARCH LETTERS, 2011, 6
  • [39] Electrical characterization of HgTe nanowires using conductive atomic force microscopy
    Gundersen, P.
    Kongshaug, K. O.
    Selvig, E.
    Haakenaasen, R.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (11)
  • [40] Electrochemical current-sensing atomic force microscopy in conductive solutions
    Pobelov, Ilya V.
    Mohos, Miklos
    Yoshida, Koji
    Kolivoska, Viliam
    Avdic, Amra
    Lugstein, Alois
    Bertagnolli, Emmerich
    Leonhardt, Kelly
    Denuault, Guy
    Gollas, Bernhard
    Wandlowski, Thomas
    NANOTECHNOLOGY, 2013, 24 (11)