Moire fringes in conductive atomic force microscopy

被引:3
|
作者
Richarz, L. [1 ]
He, J. [1 ]
Ludacka, U. [1 ]
Bourret, E. [2 ]
Yan, Z. [2 ,3 ]
van Helvoort, A. T. J. [4 ]
Meier, D. [1 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[4] NTNU Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
基金
欧洲研究理事会;
关键词
Compendex;
D O I
10.1063/5.0145173
中图分类号
O59 [应用物理学];
学科分类号
摘要
Moire physics plays an important role in characterization of functional materials and engineering of physical properties in general, ranging from strain-driven transport phenomena to superconductivity. Here, we report on the observation of moire fringes in conductive atomic force microscopy (cAFM) scans gained on the model ferroelectric Er(Mn,Ti)O-3. By performing a systematic study of the impact of key experimental parameters on the emergent moire fringes, such as scan angle and pixel density, we demonstrate that the observed fringes arise due to a superposition of the applied raster scanning and sample-intrinsic properties, classifying the measured modulation in conductance as a scanning moire effect. Our findings are important for the investigation of local transport phenomena in moire engineered materials by cAFM, providing a general guideline for distinguishing extrinsic from intrinsic moire effects. Furthermore, the experiments provide a possible pathway for enhancing the sensitivity, pushing the resolution limit of local transport measurements by probing conductance variations at the spatial resolution limit via more long-ranged moire patterns.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Current mapping of GaN films by conductive atomic force microscopy
    Pomarico, AA
    Huang, D
    Dickinson, J
    Baski, AA
    Cingolani, R
    Morkoç, H
    Molnar, R
    APPLIED PHYSICS LETTERS, 2003, 82 (12) : 1890 - 1892
  • [22] Electrical conductivities of nanosheets studied by conductive atomic force microscopy
    Yilmaz, Neval
    Ida, Shintaro
    Matsumoto, Yasumichi
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 116 (01) : 62 - 66
  • [23] Hydrogenated Nanocrystalline Silicon Investigated by Conductive Atomic Force Microscopy
    Cavallini, A.
    Cavalcoli, D.
    Rossi, M.
    Tomasi, A.
    Pichaud, B.
    Texier, M.
    Le Donne, A.
    Pizzini, S.
    Chrastina, D.
    Isella, G.
    MICROSCOPY OF SEMICONDUCTING MATERIALS 2007, 2008, 120 : 301 - +
  • [24] Switching of nanosized filaments in NiO by conductive atomic force microscopy
    Nardi, F.
    Deleruyelle, D.
    Spiga, S.
    Muller, C.
    Bouteille, B.
    Ielmini, D.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
  • [25] Conductive atomic force microscopy study of silica nanotrench structure
    Sun, Z. G.
    Kuramochi, H.
    Akinaga, H.
    Yu, H. H.
    Gu, E. D.
    APPLIED PHYSICS LETTERS, 2007, 90 (04)
  • [26] Approaching the Intrinsic Properties of Moire Structures Using Atomic Force Microscopy Ironing
    Palai, Swaroop Kumar
    Dyksik, Mateusz
    Sokolowski, Nikodem
    Ciorga, Mariusz
    Viso, Estrella Sanchez
    Xie, Yong
    Schubert, Alina
    Taniguchi, Takashi
    Watanabe, Kenji
    Maude, Duncan K.
    Surrente, Alessandro
    Baranowski, Michal
    Castellanos-Gomez, Andres
    Munuera, Carmen
    Plochocka, Paulina
    NANO LETTERS, 2023, 23 (11) : 4749 - 4755
  • [27] MOIRE FRINGES
    YOKOZEKI, S
    OPTICS AND LASERS IN ENGINEERING, 1982, 3 (01) : 15 - 27
  • [28] Nanometre moire fringes in scanning tunnelling microscopy of surface lattices
    Guo, HM
    Liu, HW
    Wang, YL
    Gao, HJ
    Shang, HX
    Liu, ZW
    Xie, HM
    Dai, FL
    NANOTECHNOLOGY, 2004, 15 (08) : 991 - 995
  • [29] Characterization of surface ionic activity of proton conductive membranes by conductive atomic force microscopy
    Nguyen, TV
    Nguyen, MV
    Lin, GY
    Rao, NX
    Xie, X
    Zhu, DM
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (02) : A88 - A91
  • [30] Reduction and oxidation of oxide ion conductors with conductive atomic force microscopy
    Lee, Wonyoung
    Lee, Minhwan
    Kim, Young-Beom
    Prinz, Fritz B.
    NANOTECHNOLOGY, 2009, 20 (44)