Steklov eigenvalues of nearly hyperspherical domains

被引:0
|
作者
Han Tan, Chee [1 ]
Viator, Robert [2 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27106 USA
[2] Denison Univ, Dept Math, Granville, OH 43023 USA
关键词
Steklov eigenvalues; perturbation theory; isoperimetric inequality; INEQUALITY;
D O I
10.1098/rspa.2023.0734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider Steklov eigenvalues of nearly hyperspherical domains in Rd+1 with d >= 3. In previous work, treating such domains as perturbations of the ball, we proved that the Steklov eigenvalues are analytic functions of the domain perturbation parameter. Here, we compute the first-order term of the asymptotic expansion and show that the first-order perturbations are eigenvalues of a Hermitian matrix, whose entries can be written explicitly in terms of Pochhammer's and Wigner 3j-symbols. We analyse the asymptotic expansion and show the following isoperimetric results among domains with fixed volume: (i) for an infinite subset of Steklov eigenvalues, the ball is not optimal and (ii) for a different infinite subset of Steklov eigenvalues, the ball is a stationary point.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Tubular Excision and Steklov Eigenvalues
    Jade Brisson
    The Journal of Geometric Analysis, 2022, 32
  • [22] Tubular Excision and Steklov Eigenvalues
    Brisson, Jade
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (05)
  • [23] Estimates for higher Steklov eigenvalues
    Yang, Liangwei
    Yu, Chengjie
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
  • [24] MAXIMIZING STEKLOV EIGENVALUES ON SURFACES
    Petrides, Romain
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 113 (01) : 95 - 188
  • [25] Sloshing, Steklov and corners: Asymptotics of Steklov eigenvalues for curvilinear polygons
    Levitin, Michael
    Parnovski, Leonid
    Polterovich, Iosif
    Sher, David A.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (03) : 359 - 487
  • [26] Monotonicity of Steklov eigenvalues on graphs and applications
    Chengjie Yu
    Yingtao Yu
    Calculus of Variations and Partial Differential Equations, 2024, 63
  • [27] UPPER BOUNDS FOR STEKLOV EIGENVALUES ON SURFACES
    Girouard, Alexandre
    Polterovich, Iosif
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2012, 19 : 77 - 85
  • [28] Optimization of Steklov-Neumann eigenvalues
    Ammaria, Habib
    Imeri, Kthim
    Nigam, Nilima
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 406
  • [29] A comparison between Neumann and Steklov eigenvalues
    Henrot, Antoine
    Michetti, Marco
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (04) : 1405 - 1442
  • [30] Upper bounds for the Steklov eigenvalues on trees
    He, Zunwu
    Hua, Bobo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)