Steklov eigenvalues of nearly hyperspherical domains

被引:0
|
作者
Han Tan, Chee [1 ]
Viator, Robert [2 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27106 USA
[2] Denison Univ, Dept Math, Granville, OH 43023 USA
关键词
Steklov eigenvalues; perturbation theory; isoperimetric inequality; INEQUALITY;
D O I
10.1098/rspa.2023.0734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider Steklov eigenvalues of nearly hyperspherical domains in Rd+1 with d >= 3. In previous work, treating such domains as perturbations of the ball, we proved that the Steklov eigenvalues are analytic functions of the domain perturbation parameter. Here, we compute the first-order term of the asymptotic expansion and show that the first-order perturbations are eigenvalues of a Hermitian matrix, whose entries can be written explicitly in terms of Pochhammer's and Wigner 3j-symbols. We analyse the asymptotic expansion and show the following isoperimetric results among domains with fixed volume: (i) for an infinite subset of Steklov eigenvalues, the ball is not optimal and (ii) for a different infinite subset of Steklov eigenvalues, the ball is a stationary point.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Eigenvalues of the Steklov problem in an infinite cylinder
    Motygin, OV
    Kuznetsov, NG
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 463 - 468
  • [42] Higher Dimensional Surgery and Steklov Eigenvalues
    Han Hong
    The Journal of Geometric Analysis, 2021, 31 : 11931 - 11951
  • [43] Electromagnetic Steklov eigenvalues: approximation analysis
    Halla, Martin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (01): : 57 - 76
  • [44] Singular Perturbation of Simple Steklov Eigenvalues
    Gryshchuk, Serhii
    Lanza de Cristoforis, Massimo
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 700 - 703
  • [45] MAXIMIZATION OF THE STEKLOV EIGENVALUES WITH A DIAMETER CONSTRAINT
    Al Sayed, Abdelkader
    Bogosel, Beniamin
    Henrot, Antoine
    Nacry, Florent
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) : 710 - 729
  • [46] Extremal problems for Steklov eigenvalues on annuli
    Fan, Xu-Qian
    Tam, Luen-Fai
    Yu, Chengjie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1043 - 1059
  • [47] The Steklov Spectrum on Moving Domains
    Bogosel, Beniamin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 75 (01): : 1 - 25
  • [48] ON THE EXISTENCE AND STABILITY OF MODIFIED MAXWELL STEKLOV EIGENVALUES
    Halla, Martin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) : 5445 - 5463
  • [49] Flexibility of Steklov eigenvalues via boundary homogenisation
    Mikhail Karpukhin
    Jean Lagacé
    Annales mathématiques du Québec, 2024, 48 : 175 - 186
  • [50] Large Steklov Eigenvalues Under Volume Constraints
    Girouard, Alexandre
    Polymerakis, Panagiotis
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)