Steklov eigenvalues of nearly hyperspherical domains

被引:0
|
作者
Han Tan, Chee [1 ]
Viator, Robert [2 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27106 USA
[2] Denison Univ, Dept Math, Granville, OH 43023 USA
关键词
Steklov eigenvalues; perturbation theory; isoperimetric inequality; INEQUALITY;
D O I
10.1098/rspa.2023.0734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider Steklov eigenvalues of nearly hyperspherical domains in Rd+1 with d >= 3. In previous work, treating such domains as perturbations of the ball, we proved that the Steklov eigenvalues are analytic functions of the domain perturbation parameter. Here, we compute the first-order term of the asymptotic expansion and show that the first-order perturbations are eigenvalues of a Hermitian matrix, whose entries can be written explicitly in terms of Pochhammer's and Wigner 3j-symbols. We analyse the asymptotic expansion and show the following isoperimetric results among domains with fixed volume: (i) for an infinite subset of Steklov eigenvalues, the ball is not optimal and (ii) for a different infinite subset of Steklov eigenvalues, the ball is a stationary point.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Estimates for eigenvalues of the Neumann and Steklov problems
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    Zhao, Yan
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [32] Higher Dimensional Surgery and Steklov Eigenvalues
    Hong, Han
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11931 - 11951
  • [33] Extremal problems for Steklov eigenvalues on annuli
    Xu-Qian Fan
    Luen-Fai Tam
    Chengjie Yu
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1043 - 1059
  • [34] Large Steklov eigenvalues on hyperbolic surfaces
    Han, Xiaolong Hans
    He, Yuxin
    Hong, Han
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (02)
  • [35] Upper bounds for the Steklov eigenvalues on trees
    Zunwu He
    Bobo Hua
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [36] Rigidity of a trace estimate for Steklov eigenvalues
    Shi, Yongjie
    Yu, Chengjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 278 : 50 - 59
  • [37] Monotonicity of Steklov eigenvalues on graphs and applications
    Yu, Chengjie
    Yu, Yingtao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (03)
  • [38] On asymptotic properties of biharmonic Steklov eigenvalues
    Liu, Genqian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) : 4729 - 4757
  • [39] Trace and inverse trace of Steklov eigenvalues
    Shi, Yongjie
    Yu, Chengjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) : 2026 - 2040
  • [40] OPTIMAL SHAPES MAXIMIZING THE STEKLOV EIGENVALUES
    Bogosel, B.
    Bucur, D.
    Giacomini, A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) : 1645 - 1680