Estimates for higher Steklov eigenvalues

被引:4
|
作者
Yang, Liangwei [1 ]
Yu, Chengjie [1 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
关键词
DIFFERENTIAL FORMS; NEUMANN OPERATOR; BOUNDS; INEQUALITY; DIRICHLET; SURFACES;
D O I
10.1063/1.4976806
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, motivated by the work of Raulot and Savo, we generalize Raulot-Savo's estimate for the first Steklov eigenvalue of Euclidean domains to higher Steklov eigenvalues. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Estimates for eigenvalues of the Neumann and Steklov problems
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    Zhao, Yan
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [2] Higher Dimensional Surgery and Steklov Eigenvalues
    Hong, Han
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11931 - 11951
  • [3] Higher Dimensional Surgery and Steklov Eigenvalues
    Han Hong
    The Journal of Geometric Analysis, 2021, 31 : 11931 - 11951
  • [4] HIGHER ORDER CHEEGER INEQUALITIES FOR STEKLOV EIGENVALUES
    Hassannezhad, Asma
    Miclo, Laurent
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (01): : 43 - 88
  • [5] Estimates for low Steklov eigenvalues of surfaces with several boundary components
    Perrin, Helene
    ANNALES MATHEMATIQUES DU QUEBEC, 2024,
  • [6] Exterior Steklov eigenvalues and modified exterior Steklov eigenvalues in inverse scattering
    Li, Yuan
    INVERSE PROBLEMS, 2020, 36 (10)
  • [7] Steklov eigenvalues for the ∞-Laplacian
    Garcia-Azorero, Jesus
    Manfredi, Juan J.
    Peral, Ireneo
    Rossi, Julio D.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2006, 17 (03) : 199 - 210
  • [8] Inequalities for the Steklov eigenvalues
    Xia, Changyu
    Wang, Qiaoling
    CHAOS SOLITONS & FRACTALS, 2013, 48 : 61 - 67
  • [9] Bounds for the Steklov eigenvalues
    Sheela Verma
    Archiv der Mathematik, 2018, 111 : 657 - 668
  • [10] Bounds for the Steklov eigenvalues
    Verma, Sheela
    ARCHIV DER MATHEMATIK, 2018, 111 (06) : 657 - 668