Estimates for low Steklov eigenvalues of surfaces with several boundary components

被引:0
|
作者
Perrin, Helene [1 ]
机构
[1] Univ Neuchatel, Inst Math, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
关键词
Steklov problem; Eigenvalue; Lower bound; Hyperbolic surface; 1ST EIGENVALUE; INEQUALITY; MANIFOLDS;
D O I
10.1007/s40316-024-00221-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give computable lower bounds for the first non-zero Steklov eigenvalue sigma 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _1$$\end{document} of a compact connected 2-dimensional Riemannian manifold M with several cylindrical boundary components. These estimates show how the geometry of M away from the boundary affects this eigenvalue. They involve geometric quantities specific to manifolds with boundary such as the extrinsic diameter of the boundary. In a second part, we give lower and upper estimates for the low Steklov eigenvalues of a hyperbolic surface with a geodesic boundary in terms of the length of some families of geodesics. This result is similar to a well known result of Schoen, Wolpert and Yau for Laplace eigenvalues on a closed hyperbolic surface. Dans cet article, nous donnons des bornes inferieures calculables pour la premiere valeur propre non nulle sigma 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _1$$\end{document} de Steklov d'une variete riemannienne compacte et connexe M de dimension 2 avec un bord forme de plusieurs composantes connexes. Ces estimations montrent comment la geometrie de M loin du bord affecte cette valeur propre. Elles font intervenir des quantites geometriques specifiques aux varietes a bord comme le diametre extrinseque du bord. Dans une deuxieme partie, nous donnons des bornes inferieures et superieures pour les valeurs propres basses d'une surface hyperbolique a bord geodesique, qui dependent de la longueur de certaines familles de geodesiques. Ce resultat est similaire a un resultat bien connu de Schoen, Wolpert et Yau pour les valeurs propres du laplacien d'une surface hyperbolique fermee.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Estimates for higher Steklov eigenvalues
    Yang, Liangwei
    Yu, Chengjie
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
  • [2] MAXIMIZING STEKLOV EIGENVALUES ON SURFACES
    Petrides, Romain
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 113 (01) : 95 - 188
  • [3] Estimates for eigenvalues of the Neumann and Steklov problems
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    Zhao, Yan
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [4] UPPER BOUNDS FOR STEKLOV EIGENVALUES ON SURFACES
    Girouard, Alexandre
    Polterovich, Iosif
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2012, 19 : 77 - 85
  • [5] Large Steklov eigenvalues on hyperbolic surfaces
    Xiaolong Hans Han
    Yuxin He
    Han Hong
    Mathematische Zeitschrift, 2024, 308 (2)
  • [6] FROM STEKLOV TO LAPLACE: FREE BOUNDARY MINIMAL SURFACES WITH MANY BOUNDARY COMPONENTS
    Karpukhin, Mikhail
    Stern, Daniel
    DUKE MATHEMATICAL JOURNAL, 2024, 173 (08) : 1557 - 1629
  • [7] Flexibility of Steklov eigenvalues via boundary homogenisation
    Mikhail Karpukhin
    Jean Lagacé
    Annales mathématiques du Québec, 2024, 48 : 175 - 186
  • [8] MULTIPLICITY BOUNDS FOR STEKLOV EIGENVALUES ON RIEMANNIAN SURFACES
    Karpukhin, Mikhail
    Kokarev, Gerasim
    Polterovich, Iosif
    ANNALES DE L INSTITUT FOURIER, 2014, 64 (06) : 2481 - 2502
  • [9] THE SPECTRAL GAP OF GRAPHS AND STEKLOV EIGENVALUES ON SURFACES
    Colbois, Bruno
    Girouard, Alexandre
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2014, 21 : 19 - 27
  • [10] Hypersurfaces with Prescribed Boundary and Small Steklov Eigenvalues
    Colbois, Bruno
    Girouard, Alexandre
    Metras, Antoine
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (01): : 46 - 57