Sloshing, Steklov and corners: Asymptotics of Steklov eigenvalues for curvilinear polygons

被引:2
|
作者
Levitin, Michael [1 ]
Parnovski, Leonid [2 ]
Polterovich, Iosif [3 ]
Sher, David A. [4 ]
机构
[1] Univ Reading, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
[2] UCL, Dept Math, London, England
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ, Canada
[4] Depaul Univ, Dept Math Sci, Chicago, IL 60604 USA
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
SHORT SURFACE-WAVES; SPECTRAL GEOMETRY; QUANTUM GRAPHS; OPERATORS; DOMAINS; DEPENDENCE; FREQUENCY; EQUATION;
D O I
10.1112/plms.12461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain asymptotic formulae for the Steklov eigenvalues and eigenfunctions of curvilinear polygons in terms of their side lengths and angles. These formulae are quite precise: the errors tend to zero as the spectral parameter tends to infinity. The Steklov problem on planar domains with corners is closely linked to the classical sloshing and sloping beach problems in hydrodynamics; as we show it is also related to quantum graphs. Somewhat surprisingly, the arithmetic properties of the angles of a curvilinear polygon have a significant effect on the boundary behaviour of the Steklov eigenfunctions. Our proofs are based on an explicit construction of quasimodes. We use a variety of methods, including ideas from spectral geometry, layer potential analysis, and some new techniques tailored to our problem.
引用
收藏
页码:359 / 487
页数:129
相关论文
共 50 条
  • [1] Sloshing, Steklov and corners: Asymptotics of sloshing eigenvalues
    Levitin, Michael
    Parnovski, Leonid
    Polterovich, Iosif
    Sher, David A.
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 146 (01): : 65 - 125
  • [2] Sloshing, Steklov and corners: Asymptotics of sloshing eigenvalues
    Michael Levitin
    Leonid Parnovski
    Iosif Polterovich
    David A. Sher
    Journal d'Analyse Mathématique, 2022, 146 : 65 - 125
  • [3] Inverse Steklov Spectral Problem for Curvilinear Polygons
    Krymski, Stanislav
    Levitin, Michael
    Parnovski, Leonid
    Polterovich, Iosif
    Sher, David A.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (01) : 1 - 37
  • [4] Exterior Steklov eigenvalues and modified exterior Steklov eigenvalues in inverse scattering
    Li, Yuan
    INVERSE PROBLEMS, 2020, 36 (10)
  • [5] Weyl asymptotics for Poincaré-Steklov eigenvalues in a domain with Lipschitz boundary
    Rozenblum, Grigori
    JOURNAL OF SPECTRAL THEORY, 2023, 13 (03) : 755 - 803
  • [6] Steklov eigenvalues for the ∞-Laplacian
    Garcia-Azorero, Jesus
    Manfredi, Juan J.
    Peral, Ireneo
    Rossi, Julio D.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2006, 17 (03) : 199 - 210
  • [7] Inequalities for the Steklov eigenvalues
    Xia, Changyu
    Wang, Qiaoling
    CHAOS SOLITONS & FRACTALS, 2013, 48 : 61 - 67
  • [8] Bounds for the Steklov eigenvalues
    Sheela Verma
    Archiv der Mathematik, 2018, 111 : 657 - 668
  • [9] Bounds for the Steklov eigenvalues
    Verma, Sheela
    ARCHIV DER MATHEMATIK, 2018, 111 (06) : 657 - 668
  • [10] Tubular Excision and Steklov Eigenvalues
    Jade Brisson
    The Journal of Geometric Analysis, 2022, 32