Sloshing, Steklov and corners: Asymptotics of Steklov eigenvalues for curvilinear polygons

被引:2
|
作者
Levitin, Michael [1 ]
Parnovski, Leonid [2 ]
Polterovich, Iosif [3 ]
Sher, David A. [4 ]
机构
[1] Univ Reading, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
[2] UCL, Dept Math, London, England
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ, Canada
[4] Depaul Univ, Dept Math Sci, Chicago, IL 60604 USA
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
SHORT SURFACE-WAVES; SPECTRAL GEOMETRY; QUANTUM GRAPHS; OPERATORS; DOMAINS; DEPENDENCE; FREQUENCY; EQUATION;
D O I
10.1112/plms.12461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain asymptotic formulae for the Steklov eigenvalues and eigenfunctions of curvilinear polygons in terms of their side lengths and angles. These formulae are quite precise: the errors tend to zero as the spectral parameter tends to infinity. The Steklov problem on planar domains with corners is closely linked to the classical sloshing and sloping beach problems in hydrodynamics; as we show it is also related to quantum graphs. Somewhat surprisingly, the arithmetic properties of the angles of a curvilinear polygon have a significant effect on the boundary behaviour of the Steklov eigenfunctions. Our proofs are based on an explicit construction of quasimodes. We use a variety of methods, including ideas from spectral geometry, layer potential analysis, and some new techniques tailored to our problem.
引用
收藏
页码:359 / 487
页数:129
相关论文
共 50 条
  • [41] Large Steklov eigenvalues via homogenisation on manifolds
    Alexandre Girouard
    Jean Lagacé
    Inventiones mathematicae, 2021, 226 : 1011 - 1056
  • [42] Large Steklov Eigenvalues Under Volume Constraints
    Girouard, Alexandre
    Polymerakis, Panagiotis
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [43] Shape optimization for low Neumann and Steklov eigenvalues
    Girouard, Alexandre
    Polterovich, Iosif
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (04) : 501 - 516
  • [44] Homogenization of Steklov eigenvalues with rapidly oscillating weights
    Salort, Ariel M.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)
  • [45] Homogenization of Steklov eigenvalues with rapidly oscillating weights
    Ariel M. Salort
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [46] MULTIPLICITY BOUNDS FOR STEKLOV EIGENVALUES ON RIEMANNIAN SURFACES
    Karpukhin, Mikhail
    Kokarev, Gerasim
    Polterovich, Iosif
    ANNALES DE L INSTITUT FOURIER, 2014, 64 (06) : 2481 - 2502
  • [47] Eigenvalues of the p(x)-Laplacian Steklov problem
    Deng, Shao-Gao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 925 - 937
  • [48] Multiple tubular excisions and large Steklov eigenvalues
    Jade Brisson
    Annals of Global Analysis and Geometry, 2024, 65
  • [49] Hypersurfaces with Prescribed Boundary and Small Steklov Eigenvalues
    Colbois, Bruno
    Girouard, Alexandre
    Metras, Antoine
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (01): : 46 - 57
  • [50] Large Steklov eigenvalues via homogenisation on manifolds
    Girouard, Alexandre
    Lagace, Jean
    INVENTIONES MATHEMATICAE, 2021, 226 (03) : 1011 - 1056