Sloshing, Steklov and corners: Asymptotics of Steklov eigenvalues for curvilinear polygons

被引:2
|
作者
Levitin, Michael [1 ]
Parnovski, Leonid [2 ]
Polterovich, Iosif [3 ]
Sher, David A. [4 ]
机构
[1] Univ Reading, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
[2] UCL, Dept Math, London, England
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ, Canada
[4] Depaul Univ, Dept Math Sci, Chicago, IL 60604 USA
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
SHORT SURFACE-WAVES; SPECTRAL GEOMETRY; QUANTUM GRAPHS; OPERATORS; DOMAINS; DEPENDENCE; FREQUENCY; EQUATION;
D O I
10.1112/plms.12461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain asymptotic formulae for the Steklov eigenvalues and eigenfunctions of curvilinear polygons in terms of their side lengths and angles. These formulae are quite precise: the errors tend to zero as the spectral parameter tends to infinity. The Steklov problem on planar domains with corners is closely linked to the classical sloshing and sloping beach problems in hydrodynamics; as we show it is also related to quantum graphs. Somewhat surprisingly, the arithmetic properties of the angles of a curvilinear polygon have a significant effect on the boundary behaviour of the Steklov eigenfunctions. Our proofs are based on an explicit construction of quasimodes. We use a variety of methods, including ideas from spectral geometry, layer potential analysis, and some new techniques tailored to our problem.
引用
收藏
页码:359 / 487
页数:129
相关论文
共 50 条
  • [21] Higher Dimensional Surgery and Steklov Eigenvalues
    Hong, Han
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11931 - 11951
  • [22] STEKLOV EIGENVALUES OF NEARLY SPHERICAL DOMAINS
    Viator, Robert
    Osting, Braxton
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (03) : 1546 - 1562
  • [23] Extremal problems for Steklov eigenvalues on annuli
    Xu-Qian Fan
    Luen-Fai Tam
    Chengjie Yu
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1043 - 1059
  • [24] Large Steklov eigenvalues on hyperbolic surfaces
    Xiaolong Hans Han
    Yuxin He
    Han Hong
    Mathematische Zeitschrift, 2024, 308 (2)
  • [25] Upper bounds for the Steklov eigenvalues on trees
    Zunwu He
    Bobo Hua
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [26] Rigidity of a trace estimate for Steklov eigenvalues
    Shi, Yongjie
    Yu, Chengjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 278 : 50 - 59
  • [27] Monotonicity of Steklov eigenvalues on graphs and applications
    Yu, Chengjie
    Yu, Yingtao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (03)
  • [28] On asymptotic properties of biharmonic Steklov eigenvalues
    Liu, Genqian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) : 4729 - 4757
  • [29] OPTIMAL SHAPES MAXIMIZING THE STEKLOV EIGENVALUES
    Bogosel, B.
    Bucur, D.
    Giacomini, A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) : 1645 - 1680
  • [30] Trace and inverse trace of Steklov eigenvalues
    Shi, Yongjie
    Yu, Chengjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) : 2026 - 2040