Machine Learning-Enabled Development of Accurate Force Fields for Refrigerants

被引:6
|
作者
Wang, Ning [1 ]
Carlozo, Montana N. N. [1 ]
Marin-Rimoldi, Eliseo [1 ]
Befort, Bridgette J. J. [1 ]
Dowling, Alexander W. W. [1 ]
Maginn, Edward J. J. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
VAPOR-LIQUID-EQUILIBRIUM; MOLECULAR-DYNAMICS; PHASE-EQUILIBRIA; INITIAL CONFIGURATIONS; BINARY-MIXTURES; SIMULATION; OPTIMIZATION; PARAMETERS; FRAMEWORK; POTENTIALS;
D O I
10.1021/acs.jctc.3c00338
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrofluorocarbon (HFC) refrigerants with zero ozone-depletingpotential have replaced chlorofluorocarbons and are now ubiquitous.However, some HFCs have high global warming potential, which has ledto calls by governments to phase out these HFCs. Technologies to recycleand repurpose these HFCs need to be developed. Therefore, thermophysicalproperties of HFCs are needed over a wide range of conditions. Molecularsimulations can help understand and predict the thermophysical propertiesof HFCs. The prediction capability of a molecular simulation is directlytied to the accuracy of the force field. In this work, we appliedand refined a machine learning-based workflow to optimize the Lennard-Jonesparameters of classical HFC force fields for HFC-143a (CF3CH3), HFC-134a (CH2FCF3), R-50 (CH4), R-170 (C2H6), and R-14 (CF4). Our workflow involves liquid density iterations with moleculardynamics simulations and vapor-liquid equilibrium (VLE) iterationswith Gibbs ensemble Monte Carlo simulations. Support vector machineclassifiers and Gaussian process surrogate models save months of simulationtime and can efficiently select optimal parameters from half a milliondistinct parameter sets. Excellent agreement as evidenced by low meanabsolute percent errors (MAPEs) of simulated liquid density (rangingfrom 0.3% to 3.4%), vapor density (ranging from 1.4% to 2.6%), vaporpressure (ranging from 1.3% to 2.8%), and enthalpy of vaporization(ranging from 0.5% to 2.7%) relative to experiments was obtained forthe recommended parameter set of each refrigerant. The performanceof each new parameter set was superior or similar to the best forcefield in the literature.
引用
收藏
页码:4546 / 4558
页数:13
相关论文
共 50 条
  • [31] Machine learning-enabled high-entropy alloy discovery
    Rao, Ziyuan
    Tung, Po-Yen
    Xie, Ruiwen
    Wei, Ye
    Zhang, Hongbin
    Ferrari, Alberto
    Klaver, T. P. C.
    Koermann, Fritz
    Sukumar, Prithiv Thoudden
    da Silva, Alisson Kwiatkowski
    Chen, Yao
    Li, Zhiming
    Ponge, Dirk
    Neugebauer, Joerg
    Gutfleisch, Oliver
    Bauer, Stefan
    Raabe, Dierk
    SCIENCE, 2022, 378 (6615) : 78 - 84
  • [32] Machine Learning-Enabled Joint Codebook Design and Beam Selection
    Liang, Fengyu
    Cai, Yunlong
    2024 19TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS, ISWCS 2024, 2024, : 733 - 738
  • [33] Transparency of artificial intelligence/machine learning-enabled medical devices
    Aubrey A. Shick
    Christina M. Webber
    Nooshin Kiarashi
    Jessica P. Weinberg
    Aneesh Deoras
    Nicholas Petrick
    Anindita Saha
    Matthew C. Diamond
    npj Digital Medicine, 7
  • [34] A machine learning-enabled intelligent application for public health and safety
    Zhang Yong
    Zhang Xiaoming
    Alshehri, Mohammad Dahman
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14551 - 14564
  • [35] Machine learning-enabled quantitative ultrasound techniques for tissue differentiation
    Thomson, Hannah
    Yang, Shufan
    Cochran, Sandy
    JOURNAL OF MEDICAL ULTRASONICS, 2022, 49 (04) : 517 - 528
  • [36] EspalomaCharge: Machine Learning-Enabled Ultrafast Partial Charge Assignment
    Wang, Yuanqing
    Pulido, Ivan
    Takaba, Kenichiro
    Kaminow, Benjamin
    Scheen, Jenke
    Wang, Lily
    Chodera, John D.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (20): : 4160 - 4167
  • [37] Practical Considerations for Machine Learning-Enabled Discoveries in Spatial Transcriptomics
    Lee, Alex J.
    Cahill, Robert
    Abbasi-Asl, Reza
    GEN BIOTECHNOLOGY, 2024, 3 (03): : 130 - 135
  • [38] Powder Bed Fusion via Machine Learning-Enabled Approaches
    Chadha, Utkarsh
    Selvaraj, Senthil Kumaran
    Abraham, Abel Saji
    Khanna, Mayank
    Mishra, Anirudh
    Sachdeva, Isha
    Kashyap, Swati
    Dev, S. Jithin
    Swatish, R. Srii
    Joshi, Ayushma
    Anand, Simar Kaur
    Adefris, Addisalem
    Kumar, R. Lokesh
    Kaliappan, Jayakumar
    Dhanalakshmi, S.
    COMPLEXITY, 2023, 2023
  • [39] Machine learning-enabled prediction of antimicrobial resistance in foodborne pathogens
    Yun, Bona
    Liao, Xinyu
    Feng, Jinsong
    Ding, Tian
    CYTA-JOURNAL OF FOOD, 2024, 22 (01)
  • [40] Machine Learning-Enabled Communication Approach for the Internet of Medical Things
    Khan, Rahim
    Ghani, Abdullah
    Chelloug, Samia Allaoua
    Amin, Mohammed
    Saeed, Aamir
    Teo, Jason
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 1569 - 1584