共 50 条
EspalomaCharge: Machine Learning-Enabled Ultrafast Partial Charge Assignment
被引:11
|作者:
Wang, Yuanqing
[1
,2
,3
]
Pulido, Ivan
[1
]
Takaba, Kenichiro
[1
,4
]
Kaminow, Benjamin
[1
,5
]
Scheen, Jenke
[1
]
Wang, Lily
[1
,6
]
Chodera, John D.
[1
]
机构:
[1] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA
[2] NYU, Simons Ctr Computat Chem, New York, NY 10004 USA
[3] NYU, Ctr Data Sci, New York, NY 10004 USA
[4] Asahi Kasei Pharm Corp, Pharmaceut Res Ctr, Adv Drug Discovery, Shizuoka 4102321, Japan
[5] Cornell Univ, Weill Cornell Med Coll, Triinst PhD Program Computat Biol & Med, New York, NY 10065 USA
[6] Open Mol Sci Fdn, Davis, CA 95618 USA
来源:
基金:
美国国家卫生研究院;
关键词:
ATOMIC CHARGES;
EFFICIENT GENERATION;
AM1-BCC MODEL;
FREE-ENERGIES;
PARAMETERIZATION;
D O I:
10.1021/acs.jpca.4c01287
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Atomic partial charges are crucial parameters in molecular dynamics simulation, dictating the electrostatic contributions to intermolecular energies and thereby the potential energy landscape. Traditionally, the assignment of partial charges has relied on surrogates of ab initio semiempirical quantum chemical methods such as AM1-BCC and is expensive for large systems or large numbers of molecules. We propose a hybrid physical/graph neural network-based approximation to the widely popular AM1-BCC charge model that is orders of magnitude faster while maintaining accuracy comparable to differences in AM1-BCC implementations. Our hybrid approach couples a graph neural network to a streamlined charge equilibration approach in order to predict molecule-specific atomic electronegativity and hardness parameters, followed by analytical determination of optimal charge-equilibrated parameters that preserve total molecular charge. This hybrid approach scales linearly with the number of atoms, enabling for the first time the use of fully consistent charge models for small molecules and biopolymers for the construction of next-generation self-consistent biomolecular force fields. Implemented in the free and open source package EspalomaCharge, this approach provides drop-in replacements for both AmberTools antechamber and the Open Force Field Toolkit charging workflows, in addition to stand-alone charge generation interfaces. Source code is available at https://github.com/choderalab/espaloma-charge.
引用
收藏
页码:4160 / 4167
页数:8
相关论文