EspalomaCharge: Machine Learning-Enabled Ultrafast Partial Charge Assignment

被引:2
|
作者
Wang, Yuanqing [1 ,2 ,3 ]
Pulido, Ivan [1 ]
Takaba, Kenichiro [1 ,4 ]
Kaminow, Benjamin [1 ,5 ]
Scheen, Jenke [1 ]
Wang, Lily [1 ,6 ]
Chodera, John D. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA
[2] NYU, Simons Ctr Computat Chem, New York, NY 10004 USA
[3] NYU, Ctr Data Sci, New York, NY 10004 USA
[4] Asahi Kasei Pharm Corp, Pharmaceut Res Ctr, Adv Drug Discovery, Shizuoka 4102321, Japan
[5] Cornell Univ, Weill Cornell Med Coll, Triinst PhD Program Computat Biol & Med, New York, NY 10065 USA
[6] Open Mol Sci Fdn, Davis, CA 95618 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2024年 / 128卷 / 20期
基金
美国国家卫生研究院;
关键词
ATOMIC CHARGES; EFFICIENT GENERATION; AM1-BCC MODEL; FREE-ENERGIES; PARAMETERIZATION;
D O I
10.1021/acs.jpca.4c01287
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic partial charges are crucial parameters in molecular dynamics simulation, dictating the electrostatic contributions to intermolecular energies and thereby the potential energy landscape. Traditionally, the assignment of partial charges has relied on surrogates of ab initio semiempirical quantum chemical methods such as AM1-BCC and is expensive for large systems or large numbers of molecules. We propose a hybrid physical/graph neural network-based approximation to the widely popular AM1-BCC charge model that is orders of magnitude faster while maintaining accuracy comparable to differences in AM1-BCC implementations. Our hybrid approach couples a graph neural network to a streamlined charge equilibration approach in order to predict molecule-specific atomic electronegativity and hardness parameters, followed by analytical determination of optimal charge-equilibrated parameters that preserve total molecular charge. This hybrid approach scales linearly with the number of atoms, enabling for the first time the use of fully consistent charge models for small molecules and biopolymers for the construction of next-generation self-consistent biomolecular force fields. Implemented in the free and open source package EspalomaCharge, this approach provides drop-in replacements for both AmberTools antechamber and the Open Force Field Toolkit charging workflows, in addition to stand-alone charge generation interfaces. Source code is available at https://github.com/choderalab/espaloma-charge.
引用
收藏
页码:4160 / 4167
页数:8
相关论文
共 50 条
  • [1] Machine learning-enabled retrobiosynthesis of molecules
    Yu, Tianhao
    Boob, Aashutosh Girish
    Volk, Michael J.
    Liu, Xuan
    Cui, Haiyang
    Zhao, Huimin
    [J]. NATURE CATALYSIS, 2023, 6 (2) : 137 - 151
  • [2] Machine learning-enabled retrobiosynthesis of molecules
    Tianhao Yu
    Aashutosh Girish Boob
    Michael J. Volk
    Xuan Liu
    Haiyang Cui
    Huimin Zhao
    [J]. Nature Catalysis, 2023, 6 : 137 - 151
  • [3] Machine Learning-Enabled Zero Touch Networks
    Shami, Abdallah
    Ong, Lyndon
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (02) : 80 - 80
  • [4] Machine Learning-Enabled Smart Sensor Systems
    Ha, Nam
    Xu, Kai
    Ren, Guanghui
    Mitchell, Arnan
    Ou, Jian Zhen
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (09)
  • [5] Machine learning-enabled multiplexed microfluidic sensors
    Dabbagh, Sajjad Rahmani
    Rabbi, Fazle
    Dogan, Zafer
    Yetisen, Ali Kemal
    Tasoglu, Savas
    [J]. BIOMICROFLUIDICS, 2020, 14 (06)
  • [6] MACHINE LEARNING-ENABLED ZERO TOUCH NETWORKS
    Shami, Abdallah
    Ong, Lyndon
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (06) : 50 - 50
  • [7] Commentary: Towards machine learning-enabled epidemiology
    Jorm, Louisa R.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (06) : 1770 - 1773
  • [8] Machine Learning-Enabled Noncontact Sleep Structure Prediction
    Zhai, Qian
    Tang, Tingyu
    Lu, Xiaoling
    Zhou, Xiaoxi
    Li, Chunguang
    Yi, Jingang
    Liu, Tao
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (05)
  • [9] Machine learning-enabled globally guaranteed evolutionary computation
    Li, Bin
    Wei, Ziping
    Wu, Jingjing
    Yu, Shuai
    Zhang, Tian
    Zhu, Chunli
    Zheng, Dezhi
    Guo, Weisi
    Zhao, Chenglin
    Zhang, Jun
    [J]. NATURE MACHINE INTELLIGENCE, 2023, 5 (04) : 457 - 467
  • [10] Machine learning-enabled globally guaranteed evolutionary computation
    Bin Li
    Ziping Wei
    Jingjing Wu
    Shuai Yu
    Tian Zhang
    Chunli Zhu
    Dezhi Zheng
    Weisi Guo
    Chenglin Zhao
    Jun Zhang
    [J]. Nature Machine Intelligence, 2023, 5 : 457 - 467