EspalomaCharge: Machine Learning-Enabled Ultrafast Partial Charge Assignment

被引:11
|
作者
Wang, Yuanqing [1 ,2 ,3 ]
Pulido, Ivan [1 ]
Takaba, Kenichiro [1 ,4 ]
Kaminow, Benjamin [1 ,5 ]
Scheen, Jenke [1 ]
Wang, Lily [1 ,6 ]
Chodera, John D. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA
[2] NYU, Simons Ctr Computat Chem, New York, NY 10004 USA
[3] NYU, Ctr Data Sci, New York, NY 10004 USA
[4] Asahi Kasei Pharm Corp, Pharmaceut Res Ctr, Adv Drug Discovery, Shizuoka 4102321, Japan
[5] Cornell Univ, Weill Cornell Med Coll, Triinst PhD Program Computat Biol & Med, New York, NY 10065 USA
[6] Open Mol Sci Fdn, Davis, CA 95618 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2024年 / 128卷 / 20期
基金
美国国家卫生研究院;
关键词
ATOMIC CHARGES; EFFICIENT GENERATION; AM1-BCC MODEL; FREE-ENERGIES; PARAMETERIZATION;
D O I
10.1021/acs.jpca.4c01287
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic partial charges are crucial parameters in molecular dynamics simulation, dictating the electrostatic contributions to intermolecular energies and thereby the potential energy landscape. Traditionally, the assignment of partial charges has relied on surrogates of ab initio semiempirical quantum chemical methods such as AM1-BCC and is expensive for large systems or large numbers of molecules. We propose a hybrid physical/graph neural network-based approximation to the widely popular AM1-BCC charge model that is orders of magnitude faster while maintaining accuracy comparable to differences in AM1-BCC implementations. Our hybrid approach couples a graph neural network to a streamlined charge equilibration approach in order to predict molecule-specific atomic electronegativity and hardness parameters, followed by analytical determination of optimal charge-equilibrated parameters that preserve total molecular charge. This hybrid approach scales linearly with the number of atoms, enabling for the first time the use of fully consistent charge models for small molecules and biopolymers for the construction of next-generation self-consistent biomolecular force fields. Implemented in the free and open source package EspalomaCharge, this approach provides drop-in replacements for both AmberTools antechamber and the Open Force Field Toolkit charging workflows, in addition to stand-alone charge generation interfaces. Source code is available at https://github.com/choderalab/espaloma-charge.
引用
收藏
页码:4160 / 4167
页数:8
相关论文
共 50 条
  • [31] Practical Considerations for Machine Learning-Enabled Discoveries in Spatial Transcriptomics
    Lee, Alex J.
    Cahill, Robert
    Abbasi-Asl, Reza
    GEN BIOTECHNOLOGY, 2024, 3 (03): : 130 - 135
  • [32] Powder Bed Fusion via Machine Learning-Enabled Approaches
    Chadha, Utkarsh
    Selvaraj, Senthil Kumaran
    Abraham, Abel Saji
    Khanna, Mayank
    Mishra, Anirudh
    Sachdeva, Isha
    Kashyap, Swati
    Dev, S. Jithin
    Swatish, R. Srii
    Joshi, Ayushma
    Anand, Simar Kaur
    Adefris, Addisalem
    Kumar, R. Lokesh
    Kaliappan, Jayakumar
    Dhanalakshmi, S.
    COMPLEXITY, 2023, 2023
  • [33] Machine learning-enabled prediction of antimicrobial resistance in foodborne pathogens
    Yun, Bona
    Liao, Xinyu
    Feng, Jinsong
    Ding, Tian
    CYTA-JOURNAL OF FOOD, 2024, 22 (01)
  • [34] Machine Learning-Enabled Development of Model for Japanese Film Industry
    Xiao-Ling, Wang
    Zhi-Long, Liu
    Madina, Zamira
    Security and Communication Networks, 2022, 2022
  • [35] Machine Learning-Enabled Communication Approach for the Internet of Medical Things
    Khan, Rahim
    Ghani, Abdullah
    Chelloug, Samia Allaoua
    Amin, Mohammed
    Saeed, Aamir
    Teo, Jason
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 1569 - 1584
  • [36] Machine Learning-Enabled Image Classification for Automated Electron Microscopy
    Day, Alexandra L.
    Wahl, Carolin B.
    Gupta, Vishu
    dos Reis, Roberto
    Liao, Wei-keng
    Mirkin, Chad A.
    Dravid, Vinayak P.
    Choudhary, Alok
    Agrawal, Ankit
    MICROSCOPY AND MICROANALYSIS, 2024, 30 (03) : 456 - 465
  • [37] A machine learning-enabled intelligent application for public health and safety
    Zhang Yong
    Zhang Xiaoming
    Mohammad Dahman Alshehri
    Neural Computing and Applications, 2023, 35 : 14551 - 14564
  • [38] Machine learning-enabled quantitative ultrasound techniques for tissue differentiation
    Hannah Thomson
    Shufan Yang
    Sandy Cochran
    Journal of Medical Ultrasonics, 2022, 49 : 517 - 528
  • [39] Machine Learning-Enabled Attacks on Anti-Phishing Blacklists
    Li, Wenhao
    Laghari, Shams Ul Arfeen
    Manickam, Selvakumar
    Chong, Yung-Wey
    Li, Binyong
    IEEE ACCESS, 2024, 12 : 191586 - 191602
  • [40] A Machine Learning-Enabled Spectrum Sensing Method for OFDM Systems
    Tian, Jinfeng
    Cheng, Peng
    Chen, Zhuo
    Li, Mingqi
    Hu, Honglin
    Li, Yonghui
    Vucetic, Branka
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (11) : 11374 - 11378